Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Support MaskDINO cityscapes semantic seg #168

Open
wants to merge 1 commit into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions projects/maskdino/configs/data/cityscapes_semantic_seg.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
from omegaconf import OmegaConf

import detectron2.data.transforms as T
from detectron2.config import LazyCall as L
from detectron2.data import (
build_detection_test_loader,
build_detection_train_loader,
get_detection_dataset_dicts,
)
from detectron2.data.dataset_mapper import DatasetMapper
from detectron2.evaluation import CityscapesSemSegEvaluator
from detectron2.data import MetadataCatalog

# from detrex.data import DetrDatasetMapper
# from projects.maskDINO.data.dataset_mappers.coco_instance_lsj_aug_dataset_mapper import COCOInstanceLSJDatasetMapper, build_transform_gen
from detrex.data.dataset_mappers.mask_former_semantic_dataset_mapper import build_transform_gen, MaskFormerSemanticDatasetMapper

dataloader = OmegaConf.create()

dataloader.train = L(build_detection_train_loader)(
dataset=L(get_detection_dataset_dicts)(names="cityscapes_fine_sem_seg_train"),
mapper=L(MaskFormerSemanticDatasetMapper)(
augmentation=L(build_transform_gen)(
min_size_train=[int(x * 0.1 * 1024) for x in range(5, 21)],
max_size_train=4096,
min_size_train_sampling='choice',
enabled_crop=True,
crop_params=dict(crop_type='absolute', crop_size=(512, 1024), single_category_max_area=1.0),
color_aug_ssd=True,
img_format='RGB',
),
meta=MetadataCatalog.get("cityscapes_fine_sem_seg_train"),
size_divisibility=-1,
is_train=True,
image_format="RGB",
),
total_batch_size=16,
num_workers=4,
)

dataloader.test = L(build_detection_test_loader)(
dataset=L(get_detection_dataset_dicts)(names="cityscapes_fine_sem_seg_val", filter_empty=False),
mapper=L(DatasetMapper)(
augmentation=[
L(T.ResizeShortestEdge)(
short_edge_length=1024,
max_size=4096,
),
],
is_train=False,
image_format="RGB",
),
num_workers=4,
)

dataloader.evaluator = L(CityscapesSemSegEvaluator)(
dataset_name="${..test.dataset.names}",
)
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
from detrex.config import get_config
from .models.maskdino_r50 import model
from .data.cityscapes_semantic_seg import dataloader

from fvcore.common.param_scheduler import MultiStepParamScheduler
from detectron2.config import LazyCall as L
from detectron2.solver import WarmupParamScheduler

model.semantic_on=True
model.instance_on=False
model.panoptic_on=False

train = get_config("common/train.py").train
# max training iterations
train.max_iter = 368750
# warmup lr scheduler
lr_multiplier = L(WarmupParamScheduler)(
scheduler=L(MultiStepParamScheduler)(
values=[1.0, 0.1],
milestones=[327778, 355092],
),
warmup_length=10 / train.max_iter,
warmup_factor=1.0,
)

optimizer = get_config("common/optim.py").AdamW
# lr_multiplier = get_config("common/coco_schedule.py").lr_multiplier_50ep

# initialize checkpoint to be loaded
train.init_checkpoint = "detectron2://ImageNetPretrained/torchvision/R-50.pkl"
train.output_dir = "./output/dab_detr_r50_50ep"


# run evaluation every 5000 iters
train.eval_period = 5000

# log training infomation every 20 iters
train.log_period = 20

# save checkpoint every 5000 iters
train.checkpointer.period = 5000

# gradient clipping for training
train.clip_grad.enabled = True
train.clip_grad.params.max_norm = 0.01
train.clip_grad.params.norm_type = 2

# set training devices
train.device = "cuda"


# modify optimizer config
optimizer.lr = 1e-4
optimizer.betas = (0.9, 0.999)
optimizer.weight_decay = 1e-4
optimizer.params.lr_factor_func = lambda module_name: 0.1 if "backbone" in module_name else 1

# # modify dataloader config
dataloader.train.num_workers = 16
#
# # please notice that this is total batch size.
# # surpose you're using 4 gpus for training and the batch size for
# # each gpu is 16/4 = 4
dataloader.train.total_batch_size = 16

# dump the testing results into output_dir for visualization
dataloader.evaluator.output_dir = train.output_dir