Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
355 changes: 355 additions & 0 deletions Test_1.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,355 @@
\{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### MinMaxScalar Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from learnemall.datasets import diabetes\n",
"from learnemall.preprocessing import MinMaxScalar"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x,y = diabetes.load_data()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ms = MinMaxScalar(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_scaled = ms.scale(x)\n",
"print(x_scaled)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(ms.revert(x_scaled))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### StandardScaler Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from learnemall.datasets import diabetes\n",
"from learnemall.preprocessing import StandardScaler"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x,y = diabetes.load_data()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ss = StandardScaler(x)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"x_scaled = ss.scale(x)\n",
"print(x_scaled)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(ss.revert(x_scaled))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Linear Regression Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from learnemall.datasets import diabetes\n",
"from learnemall.linear import LinearRegression\n",
"from sklearn.metrics import mean_squared_error"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xtrain,xtest,ytrain,ytest = diabetes.load_data(split=True,ratio=0.75)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xtrain.shape,ytrain.shape,xtest.shape,ytest.shape,"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lr = LinearRegression()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"history = lr.fit(xtrain,ytrain,learning_rate=0.01,num_iters=10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mean_squared_error(ytrain,lr.predict(xtrain))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"mean_squared_error(ytest, lr.predict(xtest))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Logistic Regression Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from learnemall.datasets import iris\n",
"from learnemall.linear import LogisticRegression\n",
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xtrain,xtest,ytrain,ytest = iris.load_data(split=True,ratio=0.75)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xtrain.shape,ytrain.shape,xtest.shape,ytest.shape,"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lr = LogisticRegression()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"history = lr.fit(xtrain,ytrain,learning_rate=0.01,num_iters=10000)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"probs = lr.predict_proba(xtrain)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(ytrain, lr.predict(xtrain))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(ytest, lr.predict(xtest))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### KNNClassifier Test"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from learnemall.neighbors import KNNClassifier\n",
"from learnemall.datasets import iris"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xtrain,xtest,ytrain,ytest = iris.load_data(split=True,ratio=0.75)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"xtrain.shape,ytrain.shape,xtest.shape,ytest.shape,"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"knn = KNNClassifier()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.8"
}
},
"nbformat": 4,
"nbformat_minor": 2
}