convnext-base-224_finetuned_on_unlabelled_IA_with_snorkel_labels

This model is a fine-tuned version of facebook/convnext-base-224 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3443
  • Precision: 0.9864
  • Recall: 0.9822
  • F1: 0.9843
  • Accuracy: 0.9884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP
  • label_smoothing_factor: 0.2

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3611 1.0 2021 0.3467 0.9843 0.9729 0.9784 0.9842
0.3524 2.0 4042 0.3453 0.9853 0.9790 0.9821 0.9868
0.3466 3.0 6063 0.3438 0.9854 0.9847 0.9851 0.9889
0.3433 4.0 8084 0.3434 0.9850 0.9808 0.9829 0.9873
0.3404 5.0 10105 0.3459 0.9853 0.9790 0.9821 0.9868
0.3384 6.0 12126 0.3453 0.9853 0.9790 0.9821 0.9868
0.3382 7.0 14147 0.3437 0.9864 0.9822 0.9843 0.9884
0.3358 8.0 16168 0.3441 0.9857 0.9829 0.9843 0.9884
0.3349 9.0 18189 0.3448 0.9857 0.9829 0.9843 0.9884
0.3325 10.0 20210 0.3443 0.9864 0.9822 0.9843 0.9884

Framework versions

  • Transformers 4.22.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.5.1
  • Tokenizers 0.12.1
Downloads last month
10
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using ImageIN/convnext-base-224_finetuned_on_unlabelled_IA_with_snorkel_labels 1