Skip to content

ScaleSerializable mixin #125

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Aug 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion .github/workflows/unittests.yml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ jobs:
runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.7', '3.8', '3.9', '3.10']
python-version: ['3.8', '3.9', '3.10', '3.11', '3.12']

steps:
- uses: actions/checkout@v2
Expand Down
2 changes: 1 addition & 1 deletion pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ authors = [
{ name = "Polkascan Foundation", email = "[email protected]" }
]

requires-python = ">=3.6, <4"
requires-python = ">=3.8, <4"
classifiers = [
"Development Status :: 5 - Production/Stable",
"Intended Audience :: Developers",
Expand Down
223 changes: 223 additions & 0 deletions scalecodec/mixins.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
import dataclasses
from dataclasses import is_dataclass
import enum
from typing import Type, TypeVar, Union
import typing
import json

from scalecodec.base import ScaleTypeDef, ScaleType, ScaleBytes
from scalecodec.types import Struct, Option, Vec, Enum

T = TypeVar('T')


class ScaleSerializable:
@classmethod
def scale_type_def(cls) -> ScaleTypeDef:
if is_dataclass(cls):

arguments = {}
for field in dataclasses.fields(cls):
arguments[field.name] = cls.dataclass_field_to_scale_typ_def(field)

return Struct(**arguments)
elif issubclass(cls, enum.Enum):
variants = {status.name: None for status in cls}
return Enum(**variants)

raise NotImplementedError

def serialize(self) -> Union[str, int, float, bool, dict, list]:
scale_type = self.to_scale_type()
return scale_type.serialize()

@classmethod
def deserialize(cls: Type[T], data: Union[str, int, float, bool, dict, list]) -> T:
scale_type = cls.scale_type_def().new()
scale_type.deserialize(data)
return cls.from_scale_type(scale_type)

def to_scale_type(self) -> ScaleType:

if not is_dataclass(self) and not issubclass(self.__class__, enum.Enum):
raise NotImplementedError("Type not supported.")

scale_type = self.scale_type_def().new()

if issubclass(self.__class__, enum.Enum):
scale_type.deserialize(self.name)
elif is_dataclass(self):
value = {}
for field in dataclasses.fields(self):

actual_type = field.type
field_name = field.name[:-1] if field.name.endswith('_') else field.name

if typing.get_origin(actual_type) is typing.Union:
# Extract the arguments of the Union type
args = typing.get_args(actual_type)
if type(None) in args:
# If NoneType is in the args, it's an Optional
actual_type = [arg for arg in args if arg is not type(None)][0]

if getattr(self, field.name) is None:
value[field_name] = None
else:

if typing.get_origin(actual_type) is list:
actual_type = typing.get_args(actual_type)[0]

if issubclass(actual_type, ScaleSerializable):
value[field_name] = [i.serialize() for i in getattr(self, field.name)]
else:
value[field_name] = getattr(self, field.name)

# TODO too simplified now
elif issubclass(actual_type, ScaleSerializable):

value[field_name] = getattr(self, field.name).serialize()
else:
value[field_name] = getattr(self, field.name)

scale_type.deserialize(value)

return scale_type

@classmethod
def from_scale_type(cls: Type[T], scale_type: ScaleType) -> T:
if is_dataclass(cls):

fields = {}

for field in dataclasses.fields(cls):

scale_field_name = field.name[:-1] if field.name.endswith('_') else field.name

actual_type = field.type

if typing.get_origin(field.type) is typing.Union:
# Extract the arguments of the Union type
args = typing.get_args(field.type)
if type(None) in args:
# If NoneType is in the args, it's an Optional
if field.name in scale_type.value:
if scale_type.value[field.name] is None:
fields[field.name] = None
continue
else:
actual_type = [arg for arg in args if arg is not type(None)][0]
else:
# print(field.name)
continue

if typing.get_origin(actual_type) is list:
items = []
actual_type = typing.get_args(actual_type)[0]

if issubclass(type(scale_type.type_def), (Struct, Option)):
list_items = scale_type.value_object[scale_field_name].value_object
elif issubclass(type(scale_type.type_def), (Vec, Enum)):
list_items = scale_type.value_object[1].value_object
else:
raise ValueError(f'Unsupported type: {type(scale_type.type_def)}')

for item in list_items:
if actual_type in [str, int, float, bool]:
items.append(item.value)
elif actual_type is bytes:
items.append(item.to_bytes())
elif is_dataclass(actual_type):
items.append(actual_type.from_scale_type(item))

fields[field.name] = items

elif actual_type in [str, int, float, bool]:
fields[field.name] = scale_type.value[scale_field_name]
elif actual_type is bytes:
fields[field.name] = scale_type.value_object[scale_field_name].to_bytes()
elif is_dataclass(actual_type):
try:

# TODO unwrap Option
if issubclass(type(scale_type.type_def), (Struct, Option)):

field_scale_type = scale_type.value_object[scale_field_name]
elif issubclass(type(scale_type.type_def), Enum):
field_scale_type = scale_type.value_object[1]
else:
raise ValueError(f"Unexpected type {type(scale_type.type_def)}")

fields[field.name] = actual_type.from_scale_type(field_scale_type)
except (KeyError, TypeError) as e:
print('oeps', str(e))
elif issubclass(actual_type, enum.Enum):
fields[field.name] = actual_type[scale_type.value_object[1].value]
return cls(**fields)
raise NotImplementedError

def to_scale_bytes(self) -> ScaleBytes:
scale_obj = self.to_scale_type()
return scale_obj.encode()

@classmethod
def from_scale_bytes(cls: Type[T], scale_bytes: ScaleBytes) -> T:
scale_obj = cls.scale_type_def().new()
scale_obj.decode(scale_bytes)
return cls.from_scale_type(scale_obj)

def to_json(self) -> str:
return json.dumps(self.serialize(), indent=4)

@classmethod
def from_json(cls: Type[T], json_data: str) -> T:
# data = json.loads(json_data)
return cls.deserialize(json_data)

@classmethod
def dataclass_field_to_scale_typ_def(cls, field) -> ScaleTypeDef:

if 'scale' in field.metadata:
return field.metadata['scale']

# Check if the field type is an instance of Optional
actual_type = field.type
wrap_option = False
wrap_vec = False

if typing.get_origin(field.type) is typing.Union:
# Extract the arguments of the Union type
args = typing.get_args(field.type)
if type(None) in args:
# If NoneType is in the args, it's an Optional
wrap_option = True
actual_type = [arg for arg in args if arg is not type(None)][0]
# print(f"The field '{field.name}' is Optional with inner type: {actual_type}")

if typing.get_origin(actual_type) is list:
wrap_vec = True
actual_type = typing.get_args(actual_type)[0]

if is_dataclass(actual_type):
if issubclass(actual_type, ScaleSerializable):
scale_def = actual_type.scale_type_def()
else:
raise ValueError(f"Cannot serialize dataclass {field.type.__class__}")

elif actual_type is bytes:
raise ValueError("bytes is ambiguous; specify SCALE type def in metadata e.g. {'scale': H256}")
elif actual_type is int:
raise ValueError("int is ambiguous; specify SCALE type def in metadata e.g. {'scale': U32}")

elif issubclass(actual_type, enum.Enum):
variants = {status.name: None for status in actual_type}
scale_def = Enum(**variants)

else:
raise ValueError(f"Cannot convert {actual_type} to ScaleTypeDef")

if wrap_vec:
scale_def = Vec(scale_def)
if wrap_option:
scale_def = Option(scale_def)

return scale_def
135 changes: 135 additions & 0 deletions test/test_mixins.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import enum
import json
import os
import unittest
from dataclasses import dataclass, field
from os import path
from typing import Optional, Type, Union, List

from scalecodec.base import ScaleBytes, ScaleType
from scalecodec.mixins import ScaleSerializable, T
from scalecodec.types import H256, U8, Array, Enum


# Test definitions


@dataclass
class ValidatorData(ScaleSerializable):
bandersnatch: bytes = field(metadata={'scale': H256})
ed25519: bytes = field(metadata={'scale': H256})
bls: bytes = field(metadata={'scale': Array(U8, 144)})
metadata: bytes = field(metadata={'scale': Array(U8, 128)})


@dataclass
class EpochMark(ScaleSerializable):
entropy: bytes = field(metadata={'scale': H256})
validators: List[bytes] = field(metadata={'scale': Array(H256, 6)})

@dataclass
class OutputMarks(ScaleSerializable):
epoch_mark: Optional[EpochMark] = None


class CustomErrorCode(ScaleSerializable, enum.Enum):
bad_slot = 0 # Timeslot value must be strictly monotonic.
unexpected_ticket = 1 # Received a ticket while in epoch's tail.
bad_ticket_order = 2 # Tickets must be sorted.
bad_ticket_proof = 3 # Invalid ticket ring proof.
bad_ticket_attempt = 4 # Invalid ticket attempt value.
reserved = 5 # Reserved
duplicate_ticket = 6 # Found a ticket duplicate.
too_many_tickets = 7 # Found amount of tickets > K


@dataclass
class Output(ScaleSerializable):
ok: Optional[OutputMarks] = None # Markers
err: Optional[CustomErrorCode] = None

@classmethod
def scale_type_def(cls):

return Enum(
ok=OutputMarks.scale_type_def(),
err=CustomErrorCode.scale_type_def()
)

def to_scale_type(self) -> ScaleType:
scale_type = self.scale_type_def().new()
scale_type.deserialize(self.serialize())
return scale_type

@classmethod
def deserialize(cls: Type[T], data: Union[str, int, float, bool, dict, list]) -> T:

return super().deserialize(data)

def serialize(self) -> Union[str, int, float, bool, dict, list]:
if self.err is not None:
return {'err': self.err.serialize()}
else:
return {'ok': self.ok.serialize()}


class TestSerializableMixin(unittest.TestCase):

def setUp(self):
data = {
'bandersnatch': '0x5e465beb01dbafe160ce8216047f2155dd0569f058afd52dcea601025a8d161d',
'ed25519': '0x3b6a27bcceb6a42d62a3a8d02a6f0d73653215771de243a63ac048a18b59da29',
'bls': '0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
'metadata': '0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000'
}

self.test_obj = ValidatorData.deserialize(data)

def test_dataclass_serialization(self):
output = Output(ok=OutputMarks(epoch_mark=None))
value = output.serialize()
self.assertEqual({'ok': {'epoch_mark': None}}, value)

output = Output(err=CustomErrorCode.duplicate_ticket)
value = output.serialize()

self.assertEqual({'err': 'duplicate_ticket'}, value)

def test_dataclass_to_scale_type(self):
output = Output(
ok=OutputMarks(
epoch_mark=EpochMark(
entropy=bytes(32),
validators=[bytes(32), bytes(32), bytes(32), bytes(32), bytes(32), bytes(32)]
)
)
)
scale_type = output.to_scale_type()
output2 = Output.from_scale_type(scale_type)
self.assertEqual(output, output2)

def test_deserialize(self):

data = {
'bandersnatch': '0x5e465beb01dbafe160ce8216047f2155dd0569f058afd52dcea601025a8d161d',
'ed25519': '0x3b6a27bcceb6a42d62a3a8d02a6f0d73653215771de243a63ac048a18b59da29',
'bls': '0x000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000',
'metadata': '0x0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000'
}

validator_obj = ValidatorData.deserialize(data)

self.assertEqual(self.test_obj, validator_obj)
self.assertEqual(data, validator_obj.serialize())

def test_from_to_scale_bytes(self):

scale_data = self.test_obj.to_scale_bytes()

validator_obj = ValidatorData.from_scale_bytes(scale_data)

self.assertEqual(self.test_obj, validator_obj)


if __name__ == '__main__':
unittest.main()
Loading