EFFD: An Unsupervised Surface Defect Detection Method Based on Estimation and Fusion of Normal Sample Feature Distribution
python main.py
--mode train
--plus 1
--device 0
--batch_size 4
--num_workers 15
--image_size 256 256
--iaff_num_epochs 200
--iaff_lr 0.00001
--iaff_weight_decay 0.00005
--cae_num_epochs 200
--cae_lr 0.00001
--cae_weight_decay 0.00005
--levels level_2_1 level_2_2 level_3_1 level_3_2 level_3_3 level_3_4 level_4_1 level_4_2 level_4_3 level_4_4
--pool avgpool
--padding_mode reflect
--gamma 4
--alpha 3
--betas 2 2 2
--eta 8 8
--sigma 4 4
--dataset mvtec
--categories tile wood cable
--weights [8,4,1] [8,1,1] [1,4,8]
--data_path data
--pretrain_path pretrain
--evaluate_interval 1
python main.py
--mode test
--plus 1
--device 0
--num_workers 15
--image_size 256 256
--levels level_2_1 level_2_2 level_3_1 level_3_2 level_3_3 level_3_4 level_4_1 level_4_2 level_4_3 level_4_4
--pool avgpool
--padding_mode reflect
--gamma 4
--alpha 3
--betas 2 2 2
--eta 8 8
--sigma 4 4
--dataset mvtec
--categories tile wood cable
--weights [8,4,1] [8,1,1] [1,4,8]
--data_path data
--pretrain_path pretrain
--result_path result
--expect_fprs 0.0001 0.0005 0.001