Skip to content

Commit

Permalink
Fix multiprocessing for Windows by using the __name__ == '__main__' i…
Browse files Browse the repository at this point in the history
…diom
  • Loading branch information
iver56 committed Mar 13, 2018
1 parent 079da5c commit b4ee6ea
Show file tree
Hide file tree
Showing 2 changed files with 50 additions and 48 deletions.
1 change: 1 addition & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -40,3 +40,4 @@ test/.coverage
*/**/*.dylib*
test/data/legacy_serialized.pt
*~
.idea
97 changes: 49 additions & 48 deletions train.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,54 +4,55 @@
from models.models import create_model
from util.visualizer import Visualizer

opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)

model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0

for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0

for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()

if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)

if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)

if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
if __name__ == '__main__':
opt = TrainOptions().parse()
data_loader = CreateDataLoader(opt)
dataset = data_loader.load_data()
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)

model = create_model(opt)
visualizer = Visualizer(opt)
total_steps = 0

for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
iter_data_time = time.time()
epoch_iter = 0

for i, data in enumerate(dataset):
iter_start_time = time.time()
if total_steps % opt.print_freq == 0:
t_data = iter_start_time - iter_data_time
visualizer.reset()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()

if total_steps % opt.display_freq == 0:
save_result = total_steps % opt.update_html_freq == 0
visualizer.display_current_results(model.get_current_visuals(), epoch, save_result)

if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t, t_data)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter) / dataset_size, opt, errors)

if total_steps % opt.save_latest_freq == 0:
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, total_steps))
model.save('latest')

iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)

iter_data_time = time.time()
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, total_steps))
model.save('latest')
model.save(epoch)

print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()
print('End of epoch %d / %d \t Time Taken: %d sec' %
(epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
model.update_learning_rate()

0 comments on commit b4ee6ea

Please sign in to comment.