forked from junyanz/pytorch-CycleGAN-and-pix2pix
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
255 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
{ | ||
"nbformat": 4, | ||
"nbformat_minor": 0, | ||
"metadata": { | ||
"colab": { | ||
"name": "CycleGAN", | ||
"provenance": [], | ||
"collapsed_sections": [], | ||
"include_colab_link": true | ||
}, | ||
"kernelspec": { | ||
"name": "python3", | ||
"display_name": "Python 3" | ||
}, | ||
"accelerator": "GPU" | ||
}, | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "view-in-github", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"<a href=\"https://colab.research.google.com/github/bkkaggle/pytorch-CycleGAN-and-pix2pix/blob/master/CycleGAN.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "5VIGyIus8Vr7", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"Take a look at the [repository](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) for more information" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "7wNjDKdQy35h", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Install" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "TRm-USlsHgEV", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "Pt3igws3eiVp", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"import os\n", | ||
"os.chdir('pytorch-CycleGAN-and-pix2pix/')" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "z1EySlOXwwoa", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"!pip install -r requirements.txt" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "8daqlgVhw29P", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Datasets\n", | ||
"\n", | ||
"Download one of the official datasets with:\n", | ||
"\n", | ||
"- `bash ./datasets/download_cyclegan_dataset.sh [apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower]`\n", | ||
"\n", | ||
"Or use your own dataset by creating the appropriate folders and adding in the images.\n", | ||
"\n", | ||
"- Create a dataset folder under `/dataset` for your dataset.\n", | ||
"- Create subfolders `testA`, `testB`, `trainA`, and `trainB` under your dataset's folder. Place any images you want to transform from a to b (cat2dog) in the `testA` folder, images you want to transform from b to a (dog2cat) in the `testB` folder, and do the same for the `trainA` and `trainB` folders." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "vrdOettJxaCc", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"!bash ./datasets/download_cyclegan_dataset.sh horse2zebra" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "gdUz4116xhpm", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Pretrained models\n", | ||
"\n", | ||
"Download one of the official pretrained models with:\n", | ||
"\n", | ||
"- `bash ./scripts/download_cyclegan_model.sh [apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower]`\n", | ||
"\n", | ||
"Or add your own pretrained model to `./checkpoints/{NAME}_pretrained/latest_net_G.pt`" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "B75UqtKhxznS", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"!bash ./scripts/download_cyclegan_model.sh horse2zebra" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "yFw1kDQBx3LN", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Training\n", | ||
"\n", | ||
"- `python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan`\n", | ||
"\n", | ||
"Change the `--dataroot` and `--name` to your own dataset's path and model's name. Use `--gpu_ids 0,1,..` to train on multiple GPUs and `--batch_size` to change the batch size. I've found that a batch size of 16 fits onto 4 V100s and can finish training an epoch in ~90s.\n", | ||
"\n", | ||
"Once your model has trained, copy over the last checkpoint to a format that the testing model can automatically detect:\n", | ||
"\n", | ||
"Use `cp ./checkpoints/horse2zebra/latest_net_G_A.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class A to class B and `cp ./checkpoints/horse2zebra/latest_net_G_B.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class B to class A.\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "0sp7TCT2x9dB", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"!python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "9UkcaFZiyASl", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Testing\n", | ||
"\n", | ||
"- `python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout`\n", | ||
"\n", | ||
"Change the `--dataroot` and `--name` to be consistent with your trained model's configuration.\n", | ||
"\n", | ||
"> from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix:\n", | ||
"> The option --model test is used for generating results of CycleGAN only for one side. This option will automatically set --dataset_mode single, which only loads the images from one set. On the contrary, using --model cycle_gan requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.\n", | ||
"\n", | ||
"> For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "uCsKkEq0yGh0", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"!python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"metadata": { | ||
"id": "OzSKIPUByfiN", | ||
"colab_type": "text" | ||
}, | ||
"source": [ | ||
"# Visualize" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "9Mgg8raPyizq", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_fake.png')\n", | ||
"plt.imshow(img)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"metadata": { | ||
"id": "0G3oVH9DyqLQ", | ||
"colab_type": "code", | ||
"colab": {} | ||
}, | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_real.png')\n", | ||
"plt.imshow(img)" | ||
], | ||
"execution_count": 0, | ||
"outputs": [] | ||
} | ||
] | ||
} |