-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
update Requires.jl code to package extensions (#175)
* update Requires.jl code to package extensions * drop Requires completely and make ForwardDiff a dependency * fix older Julia versions * ignore ForwardDiff staledependency in Aqua tests * resolve method ambiguities on julia nightly * fix more ambiguities
- Loading branch information
Showing
6 changed files
with
254 additions
and
232 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,235 @@ | ||
module ForwardDiffExt | ||
|
||
using ForwardDiff: ForwardDiff | ||
|
||
using Octavian: ArrayInterface, | ||
@turbo, @tturbo, | ||
One, Zero, | ||
indices, static | ||
import Octavian: real_rep, _matmul!, _matmul_serial! | ||
|
||
real_rep(a::AbstractArray{DualT}) where {TAG,T,DualT<:ForwardDiff.Dual{TAG,T}} = | ||
reinterpret(reshape, T, a) | ||
_view1(B::AbstractMatrix) = @view(B[1, :]) | ||
_view1(B::AbstractArray{<:Any,3}) = @view(B[1, :, :]) | ||
|
||
for AbstractVectorOrMatrix in (:AbstractVector, :AbstractMatrix) | ||
# multiplication of dual vector/matrix by standard matrix from the left | ||
@eval function _matmul!( | ||
_C::$(AbstractVectorOrMatrix){DualT}, | ||
A::AbstractMatrix, | ||
_B::$(AbstractVectorOrMatrix){DualT}, | ||
α, | ||
β = Zero(), | ||
nthread::Nothing = nothing, | ||
MKN = nothing, | ||
contig_axis = nothing | ||
) where {DualT<:ForwardDiff.Dual} | ||
B = real_rep(_B) | ||
C = real_rep(_C) | ||
|
||
@tturbo for n ∈ indices((C, B), 3), | ||
m ∈ indices((C, A), (2, 1)), | ||
l in indices((C, B), 1) | ||
|
||
Cₗₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), 2) | ||
Cₗₘₙ += A[m, k] * B[l, k, n] | ||
end | ||
C[l, m, n] = α * Cₗₘₙ + β * C[l, m, n] | ||
end | ||
|
||
_C | ||
end | ||
|
||
# multiplication of dual matrix by standard vector/matrix from the right | ||
@eval @inline function _matmul!( | ||
_C::$(AbstractVectorOrMatrix){DualT}, | ||
_A::AbstractMatrix{DualT}, | ||
B::$(AbstractVectorOrMatrix), | ||
α = One(), | ||
β = Zero(), | ||
nthread::Nothing = nothing, | ||
MKN = nothing | ||
) where {TAG,T,DualT<:ForwardDiff.Dual{TAG,T}} | ||
if Bool(ArrayInterface.is_dense(_C)) && | ||
Bool(ArrayInterface.is_column_major(_C)) && | ||
Bool(ArrayInterface.is_dense(_A)) && | ||
Bool(ArrayInterface.is_column_major(_A)) | ||
# we can avoid the reshape and call the standard method | ||
A = reinterpret(T, _A) | ||
C = reinterpret(T, _C) | ||
_matmul!(C, A, B, α, β, nthread, nothing) | ||
else | ||
# we cannot use the standard method directly | ||
A = real_rep(_A) | ||
C = real_rep(_C) | ||
|
||
@tturbo for n ∈ indices((C, B), (3, 2)), | ||
m ∈ indices((C, A), 2), | ||
l in indices((C, A), 1) | ||
|
||
Cₗₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), (3, 1)) | ||
Cₗₘₙ += A[l, m, k] * B[k, n] | ||
end | ||
C[l, m, n] = α * Cₗₘₙ + β * C[l, m, n] | ||
end | ||
end | ||
|
||
_C | ||
end | ||
|
||
@eval @inline function _matmul!( | ||
_C::$(AbstractVectorOrMatrix){DualT}, | ||
_A::AbstractMatrix{DualT}, | ||
_B::$(AbstractVectorOrMatrix){DualT}, | ||
α = One(), | ||
β = Zero(), | ||
nthread::Nothing = nothing, | ||
MKN = nothing, | ||
contig = nothing | ||
) where {TAG,T,P,DualT<:ForwardDiff.Dual{TAG,T,P}} | ||
A = real_rep(_A) | ||
C = real_rep(_C) | ||
B = real_rep(_B) | ||
if Bool(ArrayInterface.is_dense(_C)) && | ||
Bool(ArrayInterface.is_column_major(_C)) && | ||
Bool(ArrayInterface.is_dense(_A)) && | ||
Bool(ArrayInterface.is_column_major(_A)) | ||
# we can avoid the reshape and call the standard method | ||
Ar = reinterpret(T, _A) | ||
Cr = reinterpret(T, _C) | ||
_matmul!(Cr, Ar, _view1(B), α, β, nthread, nothing) | ||
else | ||
# we cannot use the standard method directly | ||
@tturbo for n ∈ indices((C, B), 3), | ||
m ∈ indices((C, A), 2), | ||
l in indices((C, A), 1) | ||
|
||
Cₗₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), (3, 2)) | ||
Cₗₘₙ += A[l, m, k] * B[1, k, n] | ||
end | ||
C[l, m, n] = α * Cₗₘₙ + β * C[l, m, n] | ||
end | ||
end | ||
Pstatic = static(P) | ||
@tturbo for n ∈ indices((B, C), 3), m ∈ indices((A, C), 2), p ∈ 1:Pstatic | ||
Cₚₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), (3, 2)) | ||
Cₚₘₙ += A[1, m, k] * B[p+1, k, n] | ||
end | ||
C[p+1, m, n] = C[p+1, m, n] + α * Cₚₘₙ | ||
end | ||
_C | ||
end | ||
|
||
# multiplication of dual vector/matrix by standard matrix from the left | ||
@eval function _matmul_serial!( | ||
_C::$(AbstractVectorOrMatrix){DualT}, | ||
A::AbstractMatrix, | ||
_B::$(AbstractVectorOrMatrix){DualT}, | ||
α, | ||
β, | ||
MKN | ||
) where {DualT<:ForwardDiff.Dual} | ||
B = real_rep(_B) | ||
C = real_rep(_C) | ||
|
||
@turbo for n ∈ indices((C, B), 3), | ||
m ∈ indices((C, A), (2, 1)), | ||
l in indices((C, B), 1) | ||
|
||
Cₗₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), 2) | ||
Cₗₘₙ += A[m, k] * B[l, k, n] | ||
end | ||
C[l, m, n] = α * Cₗₘₙ + β * C[l, m, n] | ||
end | ||
|
||
_C | ||
end | ||
|
||
# multiplication of dual matrix by standard vector/matrix from the right | ||
@eval @inline function _matmul_serial!( | ||
_C::$(AbstractVectorOrMatrix){DualT}, | ||
_A::AbstractMatrix{DualT}, | ||
B::$(AbstractVectorOrMatrix), | ||
α, | ||
β, | ||
MKN | ||
) where {TAG,T,DualT<:ForwardDiff.Dual{TAG,T}} | ||
if Bool(ArrayInterface.is_dense(_C)) && | ||
Bool(ArrayInterface.is_column_major(_C)) && | ||
Bool(ArrayInterface.is_dense(_A)) && | ||
Bool(ArrayInterface.is_column_major(_A)) | ||
# we can avoid the reshape and call the standard method | ||
A = reinterpret(T, _A) | ||
C = reinterpret(T, _C) | ||
_matmul_serial!(C, A, B, α, β, nothing) | ||
else | ||
# we cannot use the standard method directly | ||
A = real_rep(_A) | ||
C = real_rep(_C) | ||
|
||
@turbo for n ∈ indices((C, B), (3, 2)), | ||
m ∈ indices((C, A), 2), | ||
l in indices((C, A), 1) | ||
|
||
Cₗₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), (3, 1)) | ||
Cₗₘₙ += A[l, m, k] * B[k, n] | ||
end | ||
C[l, m, n] = α * Cₗₘₙ + β * C[l, m, n] | ||
end | ||
end | ||
|
||
_C | ||
end | ||
|
||
@eval @inline function _matmul_serial!( | ||
_C::$(AbstractVectorOrMatrix){DualT}, | ||
_A::AbstractMatrix{DualT}, | ||
_B::$(AbstractVectorOrMatrix){DualT}, | ||
α, | ||
β, | ||
MKN | ||
) where {TAG,T,P,DualT<:ForwardDiff.Dual{TAG,T,P}} | ||
A = real_rep(_A) | ||
C = real_rep(_C) | ||
B = real_rep(_B) | ||
if Bool(ArrayInterface.is_dense(_C)) && | ||
Bool(ArrayInterface.is_column_major(_C)) && | ||
Bool(ArrayInterface.is_dense(_A)) && | ||
Bool(ArrayInterface.is_column_major(_A)) | ||
# we can avoid the reshape and call the standard method | ||
Ar = reinterpret(T, _A) | ||
Cr = reinterpret(T, _C) | ||
_matmul_serial!(Cr, Ar, _view1(B), α, β, nothing) | ||
else | ||
# we cannot use the standard method directly | ||
@turbo for n ∈ indices((C, B), 3), | ||
m ∈ indices((C, A), 2), | ||
l in indices((C, A), 1) | ||
|
||
Cₗₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), (3, 2)) | ||
Cₗₘₙ += A[l, m, k] * B[1, k, n] | ||
end | ||
C[l, m, n] = α * Cₗₘₙ + β * C[l, m, n] | ||
end | ||
end | ||
Pstatic = static(P) | ||
@turbo for n ∈ indices((B, C), 3), m ∈ indices((A, C), 2), p ∈ 1:Pstatic | ||
Cₚₘₙ = zero(eltype(C)) | ||
for k ∈ indices((A, B), (3, 2)) | ||
Cₚₘₙ += A[1, m, k] * B[p+1, k, n] | ||
end | ||
C[p+1, m, n] = C[p+1, m, n] + α * Cₚₘₙ | ||
end | ||
_C | ||
end | ||
end # for | ||
|
||
end # module |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
ede28ac
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
@JuliaRegistrator register
ede28ac
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Registration pull request created: JuliaRegistries/General/82309
After the above pull request is merged, it is recommended that a tag is created on this repository for the registered package version.
This will be done automatically if the Julia TagBot GitHub Action is installed, or can be done manually through the github interface, or via: