-
Notifications
You must be signed in to change notification settings - Fork 103
Owen's T function #483
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
jbrea
wants to merge
6
commits into
JuliaMath:master
Choose a base branch
from
jbrea:master
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Owen's T function #483
Changes from all commits
Commits
Show all changes
6 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
# Owen's T Function | ||
# Written by Andy Gough; August 2021 (see https://github.com/JuliaStats/StatsFuns.jl/issues/99#issuecomment-1124581689) | ||
# Edited by Johanni Brea; January 2025 | ||
# Rev 1.09 | ||
# MIT License | ||
# | ||
# dependencies | ||
# IrrationalConstants | ||
# SpecialFunctions | ||
# | ||
# HISTORY | ||
# In the past 20 or so years, most implementations of Owen's T function have followed the algorithms given in "Fast and accurate Calculation of Owen's | ||
# T-Function", by M. Patefield and D. Tandy, Journal of Statistical Software, 5 (5), 1 - 25 (2000) | ||
# | ||
# Six algorithms were given, and which is was used depends on the values of (h,a) | ||
# | ||
# T1: first m terms of series expansion of Owen (1956) | ||
# T2: approximates 1/(1+x^2) by power series expansion up to order 2m | ||
# T3: approximates 1/(1+x^2) by chebyshev polynomials of degree 2m in x | ||
# T4: new expression for zi from T2 | ||
# T5: Gauss 2m-point quadrature; 30 figures accuracy with m=48 (p. 18) | ||
# T6: For when a is very close to 1, use formula derived from T(h,1) = 1/2 Φ(h)[1-Φ(h)] | ||
# | ||
# They developed code for these algorithms on a DEC VAX 750. The VAX 750 came out in 1980 and had a processor clock speed of 3.125 MHz. | ||
# | ||
# The reason for 6 algorithms was to speed up the function when possible, with T1 being faster than T2, T2 faster than T3, etc. | ||
# | ||
# THIS FUNCTION | ||
# A native Julia implementation, based on the equations in the paper. The FORTRAN source code was not analyzed, translated, or used. This is a new | ||
# implementation that takes advantages of Julia's unique capabilities (and those of modern computers). | ||
# | ||
# T1 through T4 are not implemented. Instead, if a < 0.999999, T5 is used to calculate Owen's T (using 48 point Gauss-Legendre quadrature) | ||
# For 0.999999 < a < 1.0, T6 is implemented. | ||
# | ||
# Partial Derivatives (FYI) | ||
# D[owent[x,a],x] = -exp(-0.5*x^2)*erf(a*x/sqrt2)/(2*sqrt2π) | ||
# D[owent[x,a],a] = exp(-0.5*(1+a^2)*(x^2))/((1+a^2)*2π) | ||
# | ||
@doc raw""" | ||
owent(h, a) | ||
|
||
Returns the value of Owen's T function | ||
```math | ||
T(h,a) = \frac{1}{2\pi } \int_{0}^{a} \frac{e^{-\frac{1}{2}h^2(1+x^2)}}{1+x^2}dx\quad(-\infty < h,a < +\infty) | ||
``` | ||
|
||
For *h* and *a* > 0, *T(h,a)* gives the volume of the uncorrelated bivariate normal distribution with zero mean and unit variance over the area from *y = ax* and *y = 0* and to the right of *x = h*. | ||
|
||
## Example | ||
``` | ||
julia> owent(0.0625, 0.025) | ||
0.003970281304296922 | ||
``` | ||
|
||
## References | ||
"Fast and accurate Calculation of Owen's T-Function", by M. Patefield and D. Tandy, Journal of Statistical Software, 5 (5), 1 - 25 (2000) | ||
|
||
"Tables for Computing Bivariate Normal Probabilities", by Donald P. Owen, The Annals of Mathematical Statistics, Vol. 27, No. 4 (Dec 1956), pp. 1075-1090 | ||
# | ||
""" | ||
function owent(h::T, a::T) where {T <: Real} | ||
|
||
invsqrt2_T = T(invsqrt2) | ||
inv2π_T = T(inv2π) | ||
|
||
#********************* | ||
# shortcut evaluations | ||
#********************* | ||
|
||
if h < 0 | ||
return owent(abs(h),a) | ||
end | ||
|
||
if h == 0 | ||
return atan(a)*inv2π_T | ||
end | ||
|
||
if a < 0 | ||
return -owent(h,abs(a)) | ||
end | ||
|
||
if a == 0 | ||
return zero(a) | ||
end | ||
|
||
if a == 1 | ||
return T(0.125)*erfc(-h*invsqrt2_T)*erfc(h*invsqrt2_T) | ||
end | ||
|
||
if a == Inf | ||
return T(0.25)*erfc(sqrt(h^2)*invsqrt2_T) | ||
end | ||
|
||
# below reduces the range from -inf < h,a < +inf to h ≥ 0, 0 ≤ a ≤ 1 | ||
if a > 1 | ||
return T(0.25)*(erfc(-h*invsqrt2_T) + erfc(-a*h*invsqrt2_T)) - T(0.25)*erfc(-h*invsqrt2_T)*erfc(-a*h*invsqrt2_T) - owent(a*h,one(a)/a) | ||
end | ||
|
||
# calculate Owen's T | ||
|
||
if a ≤ T(0.999999) | ||
x, w = gauss_legendre(T) | ||
return sum(w .* t2.(h, a, x)) | ||
else | ||
# a > 0.999999, T6 from paper (quadrature using QuadGK would also work, but be slower) | ||
|
||
j = T(0.5)*erfc(-h*invsqrt2_T) | ||
k = atan((one(a)-a)/(one(a)+a)) | ||
towen = T(0.5)*j*(one(h)-j)-inv2π_T*k*exp((-T(0.5)*(one(a)-a)*h^2)/k) | ||
|
||
return towen | ||
end | ||
end | ||
|
||
t2(h::T, a, x) where T = T(inv4π)*a*exp(-T(0.5)*(h^2)*(one(h)+(a*x)^2))/(one(h)+(a*x)^2) | ||
|
||
owent(h::Real, a::Real) = owent(promote(h,a)...) | ||
|
||
# 48-point Gauss-Legendre quadrature (Arblib.hypgeom_legendre_p_ui_root!) | ||
gauss_legendre(::Type{Float64}) = | ||
(0.9987710072524261, 0.9935301722663508, 0.9841245837228269, 0.9705915925462473, 0.9529877031604309, 0.9313866907065543, 0.9058791367155696, 0.8765720202742479, 0.8435882616243935, 0.8070662040294426, 0.7671590325157404, 0.7240341309238146, 0.6778723796326639, 0.6288673967765136, 0.5772247260839727, 0.523160974722233, 0.4669029047509584, 0.4086864819907167, 0.34875588629216075, 0.28736248735545555, 0.22476379039468905, 0.1612223560688917, 0.0970046992094627, 0.03238017096286936, -0.03238017096286936, -0.0970046992094627, -0.1612223560688917, -0.22476379039468905, -0.28736248735545555, -0.34875588629216075, -0.4086864819907167, -0.4669029047509584, -0.523160974722233, -0.5772247260839727, -0.6288673967765136, -0.6778723796326639, -0.7240341309238146, -0.7671590325157404, -0.8070662040294426, -0.8435882616243935, -0.8765720202742479, -0.9058791367155696, -0.9313866907065543, -0.9529877031604309, -0.9705915925462473, -0.9841245837228269, -0.9935301722663508, -0.9987710072524261), | ||
(0.0031533460523058385, 0.0073275539012762625, 0.01147723457923454, 0.015579315722943849, 0.01961616045735553, 0.02357076083932438, 0.027426509708356948, 0.03116722783279809, 0.03477722256477044, 0.03824135106583071, 0.04154508294346475, 0.04467456085669428, 0.04761665849249048, 0.05035903555385447, 0.05289018948519367, 0.055199503699984165, 0.057277292100403214, 0.059114839698395635, 0.06070443916589388, 0.062039423159892665, 0.06311419228625402, 0.06392423858464819, 0.06446616443595009, 0.06473769681268392, 0.06473769681268392, 0.06446616443595009, 0.06392423858464819, 0.06311419228625402, 0.062039423159892665, 0.06070443916589388, 0.059114839698395635, 0.057277292100403214, 0.055199503699984165, 0.05289018948519367, 0.05035903555385447, 0.04761665849249048, 0.04467456085669428, 0.04154508294346475, 0.03824135106583071, 0.03477722256477044, 0.03116722783279809, 0.027426509708356948, 0.02357076083932438, 0.01961616045735553, 0.015579315722943849, 0.01147723457923454, 0.0073275539012762625, 0.0031533460523058385) | ||
# 24-point Gauss-Legendre quadrature (Arblib.hypgeom_legendre_p_ui_root!) | ||
gauss_legendre(::Type{Float32}) = | ||
(0.9951872f0, 0.9747286f0, 0.93827456f0, 0.88641554f0, 0.82000196f0, 0.74012417f0, 0.64809364f0, 0.5454215f0, 0.43379351f0, 0.31504267f0, 0.19111887f0, 0.064056896f0, -0.064056896f0, -0.19111887f0, -0.31504267f0, -0.43379351f0, -0.5454215f0, -0.64809364f0, -0.74012417f0, -0.82000196f0, -0.88641554f0, -0.93827456f0, -0.9747286f0, -0.9951872f0), | ||
(0.01234123f0, 0.02853139f0, 0.044277437f0, 0.059298586f0, 0.07334648f0, 0.086190164f0, 0.097618654f0, 0.10744427f0, 0.115505666f0, 0.12167047f0, 0.12583746f0, 0.1279382f0, 0.1279382f0, 0.12583746f0, 0.12167047f0, 0.115505666f0, 0.10744427f0, 0.097618654f0, 0.086190164f0, 0.07334648f0, 0.059298586f0, 0.044277437f0, 0.02853139f0, 0.01234123f0) | ||
gauss_legendre(::Type{Float16}) = | ||
(Float16(0.9814), Float16(0.9043), Float16(0.77), Float16(0.5874), Float16(0.368), Float16(0.1252), Float16(-0.1252), Float16(-0.368), Float16(-0.5874), Float16(-0.77), Float16(-0.9043), Float16(-0.9814)), | ||
(Float16(0.04718), Float16(0.10693), Float16(0.16), Float16(0.2031), Float16(0.2335), Float16(0.2491), Float16(0.2491), Float16(0.2335), Float16(0.2031), Float16(0.16), Float16(0.10693), Float16(0.04718)) | ||
# 48-point Gauss-Legendre quadrature (Arblib.hypgeom_legendre_p_ui_root!) | ||
gauss_legendre(::Type{BigFloat}) = | ||
(big"0.9987710072524261186005414915631136400889376502767210386129404813754588436074878", big"0.9935301722663507575479287508490741183566147495946719296171518380987546182067713", big"0.9841245837228268577445836000265988305892392234173847299576501679855297780009794", big"0.9705915925462472504614119838006600573024339116308837060283723521653233091284874", big"0.9529877031604308607229606660257183432085413318239187368639476034939458705853333", big"0.9313866907065543331141743801016012677199970856189504298706048642530730422171056", big"0.9058791367155696728220748356710117883122621998274108453524854254710168231209838", big"0.8765720202742478859056935548050967545616485337299619927478757518746727101403824", big"0.8435882616243935307110898445196560498708870117375524015149131998988410546898503", big"0.8070662040294426270825530430245384459730130294604153865758629418121821540044232", big"0.7671590325157403392538554375229690536226423308482073722351285886640508368078524", big"0.7240341309238146546744822334936652465850928122807223627293663025733514606200864", big"0.6778723796326639052118512806759090588499546790260486130710406429754946468798164", big"0.6288673967765136239951649330699946520249089997901617709817329945195319139770715", big"0.5772247260839727038178092385404787728539972861401955280523973994277369963343583", big"0.5231609747222330336782258691375085262891876218118841075802295472194144547473473", big"0.4669029047509584045449288616507985092368121042585169441818691951347943934426029", big"0.4086864819907167299162254958146332864599228429948880647711509833256205384841253", big"0.3487558862921607381598179372704079161343096499683925760321229677812815940686729", big"0.2873624873554555767358864613167976878515583058010397789085000321689998442687597", big"0.224763790394689061224865440174692277438561804041654806164742641045181941897513", big"0.161222356068891718056437390783497694774374379741895117703242637556516342099581", big"0.09700469920946269893005395585362452015273622930093698643058076594480403626262214", big"0.03238017096286936203332224315213444204596280236151809242500322001737781920338223", big"-0.03238017096286936203332224315213444204596280236151809242500322001737781920338223", big"-0.09700469920946269893005395585362452015273622930093698643058076594480403626262214", big"-0.161222356068891718056437390783497694774374379741895117703242637556516342099581", big"-0.224763790394689061224865440174692277438561804041654806164742641045181941897513", big"-0.2873624873554555767358864613167976878515583058010397789085000321689998442687597", big"-0.3487558862921607381598179372704079161343096499683925760321229677812815940686729", big"-0.4086864819907167299162254958146332864599228429948880647711509833256205384841253", big"-0.4669029047509584045449288616507985092368121042585169441818691951347943934426029", big"-0.5231609747222330336782258691375085262891876218118841075802295472194144547473473", big"-0.5772247260839727038178092385404787728539972861401955280523973994277369963343583", big"-0.6288673967765136239951649330699946520249089997901617709817329945195319139770715", big"-0.6778723796326639052118512806759090588499546790260486130710406429754946468798164", big"-0.7240341309238146546744822334936652465850928122807223627293663025733514606200864", big"-0.7671590325157403392538554375229690536226423308482073722351285886640508368078524", big"-0.8070662040294426270825530430245384459730130294604153865758629418121821540044232", big"-0.8435882616243935307110898445196560498708870117375524015149131998988410546898503", big"-0.8765720202742478859056935548050967545616485337299619927478757518746727101403824", big"-0.9058791367155696728220748356710117883122621998274108453524854254710168231209838", big"-0.9313866907065543331141743801016012677199970856189504298706048642530730422171056", big"-0.9529877031604308607229606660257183432085413318239187368639476034939458705853333", big"-0.9705915925462472504614119838006600573024339116308837060283723521653233091284874", big"-0.9841245837228268577445836000265988305892392234173847299576501679855297780009794", big"-0.9935301722663507575479287508490741183566147495946719296171518380987546182067713", big"-0.9987710072524261186005414915631136400889376502767210386129404813754588436074878"), | ||
(big"0.003153346052305838632677311543891487578283938831693622295209493250319586438316842", big"0.007327553901276262102383979621786550058707902559201353274881829548806980072502799", big"0.01147723457923453948959266760909162808642050630874764065376681674103503658508731", big"0.01557931572294384872817695583446031397637626899155246951309343105269243335619984", big"0.01961616045735552781446071965221270969581303773413223918112083050740924629812146", big"0.02357076083932437914051930137844923022172973852218859873423906486456506379639118", big"0.0274265097083569482000738362625058204511841551616509759972809374993765019410236", big"0.03116722783279808890206575684635441945428534148356953550954371886143141262424302", big"0.03477722256477043889254858596380241059728139690706809871800663617967672335903626", big"0.03824135106583070631721725652371561786382396835498228892925819103405053922410909", big"0.04154508294346474921405882236106479775347282603403806308273482122272582562965843", big"0.04467456085669428041944858712585039498846278686250200843292144633919149051230188", big"0.04761665849249047482590662347892983015799806674344968539676989627880988507905503", big"0.05035903555385447495780761908786560603299409302590633069379205724693441466024811", big"0.05289018948519366709550505626469891466172648563310918638649123384829276249063296", big"0.05519950369998416286820349519163543900445092560756100054805625793058523675145725", big"0.05727729210040321570515023468470057624152712300411207753884993747681745421856388", big"0.05911483969839563574647481743351991065965560255705499855629113348583514270048057", big"0.06070443916589388005296923202782047788526086425647775511151144466063789427975123", big"0.06203942315989266390419778413759851830638339966509146156903781450273903590161649", big"0.06311419228625402565712602275023331812741364337110079121114724790803811921086588", big"0.06392423858464818662390620182551540891897408498264299989087420749955378258611148", big"0.06446616443595008220650419365770506572569192445553030876055845653739235337295456", big"0.06473769681268392250302493873659155355208191894663651001456309552308307891126462", big"0.06473769681268392250302493873659155355208191894663651001456309552308307891126462", big"0.06446616443595008220650419365770506572569192445553030876055845653739235337295456", big"0.06392423858464818662390620182551540891897408498264299989087420749955378258611148", big"0.06311419228625402565712602275023331812741364337110079121114724790803811921086588", big"0.06203942315989266390419778413759851830638339966509146156903781450273903590161649", big"0.06070443916589388005296923202782047788526086425647775511151144466063789427975123", big"0.05911483969839563574647481743351991065965560255705499855629113348583514270048057", big"0.05727729210040321570515023468470057624152712300411207753884993747681745421856388", big"0.05519950369998416286820349519163543900445092560756100054805625793058523675145725", big"0.05289018948519366709550505626469891466172648563310918638649123384829276249063296", big"0.05035903555385447495780761908786560603299409302590633069379205724693441466024811", big"0.04761665849249047482590662347892983015799806674344968539676989627880988507905503", big"0.04467456085669428041944858712585039498846278686250200843292144633919149051230188", big"0.04154508294346474921405882236106479775347282603403806308273482122272582562965843", big"0.03824135106583070631721725652371561786382396835498228892925819103405053922410909", big"0.03477722256477043889254858596380241059728139690706809871800663617967672335903626", big"0.03116722783279808890206575684635441945428534148356953550954371886143141262424302", big"0.0274265097083569482000738362625058204511841551616509759972809374993765019410236", big"0.02357076083932437914051930137844923022172973852218859873423906486456506379639118", big"0.01961616045735552781446071965221270969581303773413223918112083050740924629812146", big"0.01557931572294384872817695583446031397637626899155246951309343105269243335619984", big"0.01147723457923453948959266760909162808642050630874764065376681674103503658508731", big"0.007327553901276262102383979621786550058707902559201353274881829548806980072502799", big"0.003153346052305838632677311543891487578283938831693622295209493250319586438316842") |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
It seems like this implementation is specific to
Float64
.There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Indeed. I adapted the integration.