Skip to content
Draft
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 58 additions & 0 deletions src/ADNLPProblems/chebyquad.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
export chebyquad

function chebyquad(; use_nls::Bool = false, kwargs...)
model = use_nls ? :nls : :nlp
return chebyquad(Val(model); kwargs...)
end

function Cheby(xj::Ti, i) where {Ti}
return (xj ≥ 1) * cosh(i * acosh(max(abs(xj), 1))) + (xj ≤ -1) * (-one(Ti))^(i) * cosh(i * acosh(max(abs(xj), 1))) + (abs(xj) ≤ 1) * cos(i * acos(min(max(xj, -1), 1)))
end

function chebyquad(
::Val{:nlp};
n::Int = default_nvar,
m::Int = n,
type::Val{T} = Val(Float64),
chebyshev = Cheby,
kwargs...,
) where {T}
m = max(m, n)
function f(x; n = length(x), m = m, chebyshev = chebyshev)
return 1 // 2 * sum((1 // n * sum( chebyshev(x[j], 2i) for j=1:n) + 1 // ((2i)^2 - 1))^2 for i = 1:Int(round(m / 2))) + 1 // 2 * sum((1 // n * sum( chebyshev(x[j], 2i - 1) for j=1:n))^2 for i = 1:(Int(round(m / 2)) + mod(n, 2)))
end
x0 = T[j // (n + 1) for j=1:n]
return ADNLPModels.ADNLPModel(f, x0, name = "chebyquad"; kwargs...)
end

function chebyquad(
::Val{:nls};
n::Int = default_nvar,
m::Int = n,
type::Val{T} = Val(Float64),
chebyshev = Cheby,
kwargs...,
) where {T}
m = max(m, n)
function F!(r, x; n = length(x), m = length(r), chebyshev = chebyshev)
for i = 1:Int(round(m / 2))
r[2i] = 1 // n * sum(
(
chebyshev(x[j], 2i)
) for j=1:n) + 1 // ((2i)^2 - 1)
r[2i - 1] = 1 // n * sum(
(
chebyshev(x[j], 2i - 1)
) for j=1:n)
end
if mod(m, 2) == 1
r[m] = 1 // n * sum(
(
chebyshev(x[j], m)
) for j=1:n)
end
return r
end
x0 = T[j // (n + 1) for j=1:n]
return ADNLPModels.ADNLSModel!(F!, x0, m, name = "chebyquad-nls"; kwargs...)
end
26 changes: 26 additions & 0 deletions src/Meta/chebyquad.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
chebyquad_meta = Dict(
:nvar => 100,
:variable_nvar => true,
:ncon => 0,
:variable_ncon => false,
:minimize => true,
:name => "chebyquad",
:has_equalities_only => false,
:has_inequalities_only => false,
:has_bounds => false,
:has_fixed_variables => false,
:objtype => :least_squares,
:contype => :unconstrained,
:best_known_lower_bound => -Inf,
:best_known_upper_bound => 500.0,
:is_feasible => true,
:defined_everywhere => missing,
:origin => :unknown,
)
get_chebyquad_nvar(; n::Integer = default_nvar, kwargs...) = n
get_chebyquad_ncon(; n::Integer = default_nvar, kwargs...) = 0
get_chebyquad_nlin(; n::Integer = default_nvar, kwargs...) = 0
get_chebyquad_nnln(; n::Integer = default_nvar, kwargs...) = 0
get_chebyquad_nequ(; n::Integer = default_nvar, kwargs...) = 0
get_chebyquad_nineq(; n::Integer = default_nvar, kwargs...) = 0
get_chebyquad_nls_nequ(; n::Integer = default_nvar, m::Int = n, kwargs...) = m
46 changes: 46 additions & 0 deletions src/PureJuMP/chebyquad.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
#
# The Chebychev quadrature problem in variable dimension, using the
# exact formula for the shifted Chebyshev polynomials. This is a
# nonlinear least-squares problem with n groups. The Hessian is full.
#
# Source: Problem 35 in
# J.J. More', B.S. Garbow and K.E. Hillstrom,
# "Testing Unconstrained Optimization Software",
# ACM Transactions on Mathematical Software, vol. 7(1), pp. 17-41, 1981.
# Also problem 58 in
# A.R. Buckley,
# "Test functions for unconstrained minimization",
# TR 1989CS-3, Mathematics, statistics and computing centre,
# Dalhousie University, Halifax (CDN), 1989.
#
# classification SBR2-AN-V-0

export chebyquad

function chebyquad(args...; n::Int = default_nvar, m::Int = n, kwargs...)
m = max(m, n)

nlp = Model()

x0 = [j/(n + 1) for j=1:n]
@variable(nlp, x[j = 1:n], start = x0[j])

# Chebyshev polynomial of the first kind, using explicit expression
@NLobjective(
nlp,
Min,
0.5 * sum((
1 / n * sum(
(
ifelse(x[j] ≥ 1, cosh(2i * acosh(x[j])), ifelse(x[j] ≤ -1, (-1)^(2i) * cosh(2i * acosh(-x[j])), cos(2i * acos(x[j]))))
) for j=1:n) + 1 / ((2i)^2 - 1)
)^2 for i = 1:Int(round(m / 2))) + 0.5 * sum((
1 / n * sum(
(
ifelse(x[j] ≥ 1, cosh((2i - 1) * acosh(x[j])), ifelse(x[j] ≤ -1, (-1)^(2i - 1) * cosh((2i - 1) * acosh(-x[j])), cos((2i - 1) * acos(x[j]))))
) for j=1:n)
)^2 for i = 1:(Int(round(m / 2)) + mod(n, 2)))
)

return nlp
end