Python SDK for interacting with the Mantis visualization platform. Provides programmatic control over space creation, data visualization, and analysis.
python -m venv venv
# Windows
.\venv\Scripts\activate
# macOS/Linux
source venv/bin/activate
python -m pip install -r ./src/requirements.txt
python -m playwright install chromium
Note: If the Playwright installation fails, try running:
python -m playwright install-deps
before proceeding.
The MantisClient
object requires the parameter cookie
to be passed in. This can be obtained by logging into the Mantis webpage in your browser, opening devtools, and finding the session cookies that are passed to the requests. The following keys in cookies are required: session-id
, next-auth.callback-url
, next-auth.csrf-token
, next-auth.session-token
. Use the cookie string as the cookie
param.
Note: If you are using a local backend, you must run it with docker, or the space creation will NOT work. To do so, cd docker
from the backend root, then docker compose up -d --build
. After you run the build once, you can re-run it simply with docker compose up
. If things dno't work, check the logs and make sure they are not empty.
from client import MantisClient, SpacePrivacy, DataType, ReducerModels
from render_args import RenderArgs
import pandas as pd
mantis = MantisClient("/api/proxy/", cookie)
# Create DF (Real data will need more points)
df = pd.DataFrame({
"Symbol": ["AAPL", "GOOGL", "MSFT", "AMZN", "FB"],
"Market Cap": [2000, 1500, 1300, 1200, 800],
"Description": ["Apple Inc.", "Alphabet Inc.", "Microsoft Corporation", "Amazon.com Inc.", "Facebook Inc."]
})
# Set types
data_types = {"Symbol": DataType.Title,
"Market Cap": DataType.Numeric,
"Description": DataType.Semantic}
# Make space
new_space_id = mantis.create_space("Stock data",
data=df,
data_types=data_types,
reducer=ReducerModels.UMAP,
privacy_level=SpacePrivacy.Private)["space_id"]
# Open space
space = await mantis.open_space(space_id)
# Interact with space
await space.select_points(100)
plot = await space.render_plot("Market Cap", "embed_y")
# Close when done
await space.close()
Create spaces from DataFrames or CSV files Control visualization layout and rendering Execute code within spaces Generate plots and capture screenshots Manage panels and space configuration Support for async operations
DataType.Title # Title/ID field
DataType.Semantic # Text for semantic analysis
DataType.Numeric # Numerical values
DataType.Categoric # Categorical values
DataType.Date # Date/time values
DataType.Links # URL/link fields
SpacePrivacy.PUBLIC # Visible to all users
SpacePrivacy.PRIVATE # Only visible to owner
SpacePrivacy.SHARED # Visible to specific users
ReducerModels.UMAP # UMAP reduction
ReducerModels.PCA # PCA + UMAP
ReducerModels.TSNE # t-SNE
AIProvider.OpenAI
AIProvider.HuggingFace
# Load Mantis
mantis = MantisClient("/api/proxy/", cookie)
# Set data path + types
data_path = "./StockData.csv"
data_types = {"Symbol": DataType.Title,
"Market Cap": DataType.Numeric,
"Description": DataType.Semantic}
# Create space
new_space_id = mantis.create_space("Stock data,",
data=data_path,
data_types=data_types,
reducer=ReducerModels.UMAP,
privacy_level=SpacePrivacy.PRIVATE)["space_id"]
# Select 100 points
await space.select_points (100)
# Plot embed dimensions
plot = await space.render_plot ("embed_x", "embed_y")
code = """
computation = 6**4
print ('Hello from SDK, :P -> ' + str(computation))
"""
# Wait for code execution to finish (returns output)
await space.run_code (code)
await space.close_panel ("bags")
await space.close_panel ("quicksheet")
await space.close_panel ("userlogs")