Skip to content

Commit

Permalink
Run black
Browse files Browse the repository at this point in the history
  • Loading branch information
dnerini committed Feb 10, 2025
1 parent 9bcdc9c commit 044815f
Show file tree
Hide file tree
Showing 3 changed files with 22 additions and 10 deletions.
28 changes: 20 additions & 8 deletions mlpp_lib/models.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,8 +33,7 @@ def call(self, inputs):


def get_probabilistic_layer(
output_size,
probabilistic_layer: Union[str, dict]
output_size, probabilistic_layer: Union[str, dict]
) -> Callable:
"""Get the probabilistic layer."""

Expand All @@ -47,14 +46,23 @@ def get_probabilistic_layer(

if hasattr(probabilistic_layers, probabilistic_layer_name):
_LOGGER.info(f"Using custom probabilistic layer: {probabilistic_layer_name}")
probabilistic_layer_obj = getattr(probabilistic_layers, probabilistic_layer_name)
n_params = getattr(probabilistic_layers, probabilistic_layer_name).params_size(output_size)
probabilistic_layer_obj = getattr(
probabilistic_layers, probabilistic_layer_name
)
n_params = getattr(probabilistic_layers, probabilistic_layer_name).params_size(
output_size
)
probabilistic_layer = (
probabilistic_layer_obj(output_size, name="output", **probabilistic_layer_options) if isinstance(probabilistic_layer_obj, type)
probabilistic_layer_obj(
output_size, name="output", **probabilistic_layer_options
)
if isinstance(probabilistic_layer_obj, type)
else probabilistic_layer_obj(output_size, name="output")
)
else:
raise KeyError(f"The probabilistic layer {probabilistic_layer_name} is not available.")
raise KeyError(
f"The probabilistic layer {probabilistic_layer_name} is not available."
)

return probabilistic_layer, n_params

Expand Down Expand Up @@ -94,7 +102,9 @@ def _build_fcn_block(
def _build_fcn_output(x, output_size, probabilistic_layer, out_bias_init):
# probabilistic prediction
if probabilistic_layer:
probabilistic_layer, n_params = get_probabilistic_layer(output_size, probabilistic_layer)
probabilistic_layer, n_params = get_probabilistic_layer(
output_size, probabilistic_layer
)
if isinstance(out_bias_init, np.ndarray):
out_bias_init = np.hstack(
[out_bias_init, [0.0] * (n_params - out_bias_init.shape[0])]
Expand Down Expand Up @@ -405,7 +415,9 @@ def deep_cross_network(

# probabilistic prediction
if probabilistic_layer:
probabilistic_layer, n_params = get_probabilistic_layer(output_size, probabilistic_layer)
probabilistic_layer, n_params = get_probabilistic_layer(
output_size, probabilistic_layer
)
if isinstance(out_bias_init, np.ndarray):
out_bias_init = np.hstack(
[out_bias_init, [0.0] * (n_params - out_bias_init.shape[0])]
Expand Down
2 changes: 1 addition & 1 deletion mlpp_lib/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -121,7 +121,7 @@ def train(
steps_per_epoch=cfg.get("steps_per_epoch", None),
verbose=2,
)
LOGGER.info("Done! \U0001F40D")
LOGGER.info("Done! \U0001f40d")

# we don't need to export loss and metric functions for deployments
model.compile(optimizer=optimizer, loss=None, metrics=None)
Expand Down
2 changes: 1 addition & 1 deletion mlpp_lib/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,7 +116,7 @@ def get_metric(metric: Union[str, dict]) -> Callable:


def get_scheduler(
scheduler_config: Union[dict, None]
scheduler_config: Union[dict, None],
) -> Optional[tf.keras.optimizers.schedules.LearningRateSchedule]:
"""Create a learning rate scheduler from a config dictionary."""

Expand Down

0 comments on commit 044815f

Please sign in to comment.