-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathperform_vpr_invariance_analysis.py
369 lines (288 loc) · 22 KB
/
perform_vpr_invariance_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Tue Mar 31 17:08:00 2020
@author: mubariz
"""
import numpy as np
import cv2
from vpr_system import match_two_images
from matplotlib import pyplot as plt
from shapely.geometry import Polygon
import pickle
def compute_area_between_the_curves(h_axis,match_curve,mismatch_curve):
polygon_points = [] #creates a empty list where we will append the points to create the polygon
for itr in range(len(match_curve)):
polygon_points.append([h_axis[itr],match_curve[itr]]) #append all xy points for curve 1
for itr in range(len(mismatch_curve)):
polygon_points.append([h_axis[itr],mismatch_curve[itr]]) #append all xy points for curve 2 in the reverse order (from last point to first point)
polygon_points.append([h_axis[0],match_curve[0]]) #append the first point in curve 1 again, to it "closes" the polygon
polygon = Polygon(polygon_points)
area = polygon.area
print(area)
return area
def perform_vpr_invariance_analysis(variation_quantified_dataset_directory,VPR_techniques):
results_already_exist=False # Toggle this if you have previously executed this function and results are available in pickle file, and you don't want to recompute the results but just play around with the graphs.
viewpoint_variations_varied_scores_dict={} # Matching scores of same places with viewpoint variations
viewpoint_variations_mismatch_scores_dict={} # Matching scores of different places for comparison with above
viewpoint_variations_ABC_dict={} #ABC is area-between-the-curves
illumination_variation_varied_scores_dict={} # Matching scores of same places with illumination variations
illumination_variation_mismatch_scores_dict={} # Matching scores of different places for comparison with above
illumination_variations_ABC_dict={}
viewpoint_positions=range(119) #Total 119 different camera positions labelled between 1-119, see paper for more details
illumination_variations=range(19) #Total 19 different LED illumination labelled between 1-19, see paper for more details
if (results_already_exist==True): #If you have previously run the code for some techniques and just want to plot the results. False by default.
f1=open('invariance_dict/viewpoint_variations_varied_scores_dict.pkl','rb')
viewpoint_variations_varied_scores_dict = pickle.load(f1)
f2=open('invariance_dict/viewpoint_variations_mismatch_scores_dict.pkl','rb')
viewpoint_variations_mismatch_scores_dict = pickle.load(f2)
f3=open('invariance_dict/illumination_variation_varied_scores_dict.pkl','rb')
illumination_variation_varied_scores_dict = pickle.load(f3)
f4=open('invariance_dict/illumination_variation_mismatch_scores_dict.pkl','rb')
illumination_variation_mismatch_scores_dict = pickle.load(f4)
f5=open('invariance_dict/viewpoint_variations_ABC_dict.pkl','rb')
viewpoint_variations_ABC_dict = pickle.load(f5)
f6=open('invariance_dict/illumination_variations_ABC_dict.pkl','rb')
illumination_variations_ABC_dict = pickle.load(f6)
else:
for tech in VPR_techniques:
matching_scores_varied_with_fixed_viewpoint_and_varied_illumination=np.zeros(len(illumination_variations)) #Image at viewpoint position 1 is matched with itself and with all other different viewpoint positions
matching_scores_varied_with_varied_viewpoint_and_fixed_illumination=np.zeros(len(viewpoint_positions)) #Image at viewpoint position 1 is matched with itself and with all other different viewpoint positions
matching_scores_mismatch_with_fixed_viewpoint_and_varied_illumination=np.zeros(len(illumination_variations)) #Image at viewpoint position 1 is matched with other different places
matching_scores_mismatch_with_varied_viewpoint_and_fixed_illumination=np.zeros(len(viewpoint_positions)) #Image at viewpoint position 1 is matched with other different places
for viewpoint in viewpoint_positions:
fixed_illumination=0
base_viewpoint=0
base_image_name='Img'+str(base_viewpoint+1).zfill(3)+'_'+str(fixed_illumination+1).zfill(2)+'.bmp' #Extra 1 is added in indices to map position '0' here to position '1' of dataset
base_image=cv2.imread(variation_quantified_dataset_directory+'SET001/'+base_image_name)
varied_image_name='Img'+str(viewpoint+1).zfill(3)+'_'+str(fixed_illumination+1).zfill(2)+'.bmp' #Extra 1 is added to map position '0' here to position '1' of dataset
varied_image=cv2.imread(variation_quantified_dataset_directory+'SET001/'+varied_image_name)
mismatch_image_name='Img'+str(viewpoint+1).zfill(3)+'_'+str(fixed_illumination+1).zfill(2)+'.bmp' #Extra 1 is added to map position '0' here to position '1' of dataset
mismatch_image=cv2.imread(variation_quantified_dataset_directory+'SET004/'+mismatch_image_name)
compatible_list_variedimage=[]
compatible_list_variedimage.append(varied_image)
compatible_list_mismatchimage=[]
compatible_list_mismatchimage.append(mismatch_image)
if (base_image is not None and varied_image is not None and mismatch_image is not None):
score_varied,_=match_two_images(base_image,compatible_list_variedimage,tech)
score_mismatch,_=match_two_images(base_image,compatible_list_mismatchimage,tech)
matching_scores_varied_with_varied_viewpoint_and_fixed_illumination[viewpoint]=score_varied
matching_scores_mismatch_with_varied_viewpoint_and_fixed_illumination[viewpoint]=score_mismatch
else:
print('Images Not Found')
for illumination in illumination_variations:
fixed_viewpoint=0
base_illumination=0
base_image_name='Img'+str(fixed_viewpoint+1).zfill(3)+'_'+str(base_illumination+1).zfill(2)+'.bmp' #Extra 1 is added to map position '0' here to position '1' of dataset
base_image=cv2.imread(variation_quantified_dataset_directory+'SET001/'+base_image_name)
varied_image_name='Img'+str(fixed_viewpoint+1).zfill(3)+'_'+str(illumination+1).zfill(2)+'.bmp' #Extra 1 is added to map position '0' here to position '1' of dataset
varied_image=cv2.imread(variation_quantified_dataset_directory+'SET001/'+varied_image_name)
mismatch_image_name='Img'+str(fixed_viewpoint+1).zfill(3)+'_'+str(illumination+1).zfill(2)+'.bmp' #Extra 1 is added to map position '0' here to position '1' of dataset
mismatch_image=cv2.imread(variation_quantified_dataset_directory+'SET004/'+mismatch_image_name)
compatible_list_variedimage=[]
compatible_list_variedimage.append(varied_image)
compatible_list_mismatchimage=[]
compatible_list_mismatchimage.append(mismatch_image)
if (base_image is not None and varied_image is not None and mismatch_image is not None):
score_varied,_=match_two_images(base_image,compatible_list_variedimage,tech)
score_mismatch,_=match_two_images(base_image,compatible_list_mismatchimage,tech)
matching_scores_varied_with_fixed_viewpoint_and_varied_illumination[illumination]=score_varied
matching_scores_mismatch_with_fixed_viewpoint_and_varied_illumination[illumination]=score_mismatch
else:
print('Images Not Found')
viewpoint_variations_varied_scores_dict[tech]=matching_scores_varied_with_varied_viewpoint_and_fixed_illumination
illumination_variation_varied_scores_dict[tech]=matching_scores_varied_with_fixed_viewpoint_and_varied_illumination
viewpoint_variations_mismatch_scores_dict[tech]=matching_scores_mismatch_with_varied_viewpoint_and_fixed_illumination
illumination_variation_mismatch_scores_dict[tech]=matching_scores_mismatch_with_fixed_viewpoint_and_varied_illumination
###############################################################################################################################################
#This block of code plots the matching scores for all 8 techniques given illumination and viewpoint variations (Fig. 19 of our paper). I have left this code uncommented
#here for your convenience. You would note that it is designed for even number of VPR techniques and works best when all the 8 VPR techniques
#are being used for analysis. You may want to change the exact arrangements of subplots for the best possible readibility for the number of techniques
#you may want to use.
fig,axs=plt.subplots(4,len(VPR_techniques)/2,figsize=(12,12))
row=0
col=0
for itr,tech in enumerate(VPR_techniques):
abc=compute_area_between_the_curves(viewpoint_positions,viewpoint_variations_varied_scores_dict[tech],viewpoint_variations_mismatch_scores_dict[tech])
viewpoint_variations_ABC_dict[tech]=abc
if (itr<4):
row=0
col=itr
else:
row=1
col=itr-4
axs[row,col].plot(range(1,120),viewpoint_variations_varied_scores_dict[tech], label='Same Place')
axs[row,col].plot(range(1,120),viewpoint_variations_mismatch_scores_dict[tech], label='Different Place')
# axs[0,itr].set_xticks(viewpoint_positions)
axs[row,col].set(xlabel='Viewpoint Position', ylabel='Matching Score')
axs[row,col].title.set_text(tech+', ABC='+str("%0.2f"%abc))
axs[row,col].legend(loc="upper right")
# plt.plot(viewpoint_variations_varied_scores_dict[tech], label=tech+' Correct Match')
# plt.plot(viewpoint_variations_mismatch_scores_dict[tech], label=tech+' False Match')
# plt.legend()
# plt.title('Viewpoint Varied, ABC='+str(abc))
# plt.figure()
row=2
col=0
for itr,tech in enumerate(VPR_techniques):
abc=compute_area_between_the_curves(illumination_variations,illumination_variation_varied_scores_dict[tech],illumination_variation_mismatch_scores_dict[tech])
illumination_variations_ABC_dict[tech]=abc
if (itr<4):
row=2
col=itr
else:
row=3
col=itr-4
axs[row,col].plot(range(1,20),illumination_variation_varied_scores_dict[tech], label='Same Place')
axs[row,col].plot(range(1,20),illumination_variation_mismatch_scores_dict[tech], label='Different Place')
# axs[0,itr].set_xticks(viewpoint_positions)
axs[row,col].set(xlabel='Illumination State', ylabel='Matching Score')
axs[row,col].title.set_text(tech+', ABC='+str("%0.2f"%abc))
axs[row,col].legend(loc="upper right")
# plt.plot(illumination_variation_varied_scores_dict[tech], label=tech+' Correct Match')
# plt.plot(illumination_variation_mismatch_scores_dict[tech], label=tech+' False Match')
# plt.legend()
# plt.title('Illumination Varied, ABC='+str(abc))
# plt.figure()
fig.tight_layout()
fig.savefig('Invariance_All_VPRBench_PDF_4x4.pdf') #Saves the figure in the main directory of project.
##################################################################################################################
###Computing these results takes time, so it's suggested to store the results at the end of execution using below few lines of pickle storage.###
f1 = open("invariance_dict/viewpoint_variations_varied_scores_dict.pkl","wb")
pickle.dump(viewpoint_variations_varied_scores_dict,f1)
f1.close()
f2 = open("invariance_dict/viewpoint_variations_mismatch_scores_dict.pkl","wb")
pickle.dump(viewpoint_variations_mismatch_scores_dict,f2)
f2.close()
f3 = open("invariance_dict/illumination_variation_varied_scores_dict.pkl","wb")
pickle.dump(illumination_variation_varied_scores_dict,f3)
f3.close()
f4 = open("invariance_dict/illumination_variation_mismatch_scores_dict.pkl","wb")
pickle.dump(illumination_variation_mismatch_scores_dict,f4)
f4.close()
f5 = open("invariance_dict/viewpoint_variations_ABC_dict.pkl","wb")
pickle.dump(viewpoint_variations_ABC_dict,f5)
f5.close()
f6 = open("invariance_dict/illumination_variations_ABC_dict.pkl","wb")
pickle.dump(illumination_variations_ABC_dict,f6)
f6.close()
def perform_vpr_viewpointinvariance_analysis_validation(variation_quantified_validation_dataset_directory,VPR_techniques):
viewpoint_variations_varied_scores_dict={} # Matching scores of same places with viewpoint variations
viewpoint_variations_mismatch_scores_dict={} # Matching scores of different places for comparison with above
viewpoint_variations_ABC_dict={} #ABC is area-between-the-curves
viewpoint_positions=range(15) #Total 15 different camera positions labelled between 1-14, see paper for more details
for tech in VPR_techniques:
matching_scores_varied_with_varied_viewpoint_and_fixed_illumination=np.zeros(len(viewpoint_positions)) #Image at viewpoint position 1 is matched with itself and with all other different viewpoint positions
matching_scores_mismatch_with_varied_viewpoint_and_fixed_illumination=np.zeros(len(viewpoint_positions)) #Image at viewpoint position 1 is matched with other different places
for viewpoint in viewpoint_positions:
base_viewpoint=0
base_image_name=str(base_viewpoint) + '.jpg'
base_image=cv2.imread(variation_quantified_validation_dataset_directory+'Place1/'+base_image_name)
varied_image_name=str(viewpoint)+'.jpg'
varied_image=cv2.imread(variation_quantified_validation_dataset_directory+'Place1/'+varied_image_name)
mismatch_image_name=str(viewpoint)+'.jpg'
mismatch_image=cv2.imread(variation_quantified_validation_dataset_directory+'Place2/'+mismatch_image_name)
compatible_list_variedimage=[]
compatible_list_variedimage.append(varied_image)
compatible_list_mismatchimage=[]
compatible_list_mismatchimage.append(mismatch_image)
if (base_image is not None and varied_image is not None and mismatch_image is not None):
score_varied,_=match_two_images(base_image,compatible_list_variedimage,tech)
score_mismatch,_=match_two_images(base_image,compatible_list_mismatchimage,tech)
matching_scores_varied_with_varied_viewpoint_and_fixed_illumination[viewpoint]=score_varied
matching_scores_mismatch_with_varied_viewpoint_and_fixed_illumination[viewpoint]=score_mismatch
else:
print('Images Not Found')
viewpoint_variations_varied_scores_dict[tech]=matching_scores_varied_with_varied_viewpoint_and_fixed_illumination
viewpoint_variations_mismatch_scores_dict[tech]=matching_scores_mismatch_with_varied_viewpoint_and_fixed_illumination
###############################################################################################################################################
#This block of code plots the matching scores for all 8 techniques given viewpoint variations of QUT Multi-lane dataset (Fig. 20 of our paper). I have left this code uncommented
#here for your convenience. You would note that it is designed for even number of VPR techniques and works best when all the 8 VPR techniques
#are being used for analysis. You may want to change the exact arrangements of subplots for the best possible readibility for the number of techniques
#you may want to use.
fig,axs=plt.subplots(2,len(VPR_techniques)/2,figsize=(12,6))
row=0
col=0
for itr,tech in enumerate(VPR_techniques):
abc=compute_area_between_the_curves(viewpoint_positions,viewpoint_variations_varied_scores_dict[tech],viewpoint_variations_mismatch_scores_dict[tech])
viewpoint_variations_ABC_dict[tech]=abc
if (itr<4):
row=0
col=itr
else:
row=1
col=itr-4
axs[row,col].plot(range(1,len(viewpoint_positions)+1),viewpoint_variations_varied_scores_dict[tech], label='Same Place')
axs[row,col].plot(range(1,len(viewpoint_positions)+1),viewpoint_variations_mismatch_scores_dict[tech], label='Different Place')
# axs[0,itr].set_xticks(viewpoint_positions)
axs[row,col].set(xlabel='Viewpoint Position', ylabel='Matching Score')
axs[row,col].title.set_text(tech+', ABC='+str("%0.2f"%abc))
axs[row,col].legend(loc="upper right")
# plt.plot(viewpoint_variations_varied_scores_dict[tech], label=tech+' Correct Match')
# plt.plot(viewpoint_variations_mismatch_scores_dict[tech], label=tech+' False Match')
# plt.legend()
# plt.title('Viewpoint Varied, ABC='+str(abc))
# plt.figure()
fig.tight_layout()
fig.savefig('Viewpoint_Invariance_Validation__All_VPRBench_PDF_4x2.pdf') #Saves the figure in the main directory of project.
def perform_vpr_illuminationinvariance_analysis_validation(illumination_quantified_validation_dataset_directory,VPR_techniques):
illumination_variations_varied_scores_dict={} # Matching scores of same places with viewpoint variations
illumination_variations_mismatch_scores_dict={} # Matching scores of different places for comparison with above
illumination_variations_ABC_dict={} #ABC is area-between-the-curves
illumination_positions=range(25) #Total 119 different camera positions labelled between 1-119, see paper for more details
for tech in VPR_techniques:
matching_scores_varied_with_fixed_viewpoint_and_varied_illumination=np.zeros(len(illumination_positions)) #Image at viewpoint position 1 is matched with itself and with all other different viewpoint positions
matching_scores_mismatch_with_fixed_viewpoint_and_varied_illumination=np.zeros(len(illumination_positions)) #Image at viewpoint position 1 is matched with other different places
for illumination in illumination_positions:
base_illumination=0
Place1='elm_2floor_bedroom2/'
Place2='west_kitchen4/'
base_image_name='dir_'+str(base_illumination)+'_mip2' + '.jpg'
base_image=cv2.imread(illumination_quantified_validation_dataset_directory+Place1+base_image_name)
varied_image_name='dir_'+str(illumination)+'_mip2' + '.jpg'
varied_image=cv2.imread(illumination_quantified_validation_dataset_directory+Place1+varied_image_name)
mismatch_image_name='dir_'+str(illumination)+'_mip2' + '.jpg'
mismatch_image=cv2.imread(illumination_quantified_validation_dataset_directory+Place2+mismatch_image_name)
compatible_list_variedimage=[]
compatible_list_variedimage.append(varied_image)
compatible_list_mismatchimage=[]
compatible_list_mismatchimage.append(mismatch_image)
if (base_image is not None and varied_image is not None and mismatch_image is not None):
score_varied,_=match_two_images(base_image,compatible_list_variedimage,tech)
score_mismatch,_=match_two_images(base_image,compatible_list_mismatchimage,tech)
matching_scores_varied_with_fixed_viewpoint_and_varied_illumination[illumination]=score_varied
matching_scores_mismatch_with_fixed_viewpoint_and_varied_illumination[illumination]=score_mismatch
else:
print('Images Not Found')
illumination_variations_varied_scores_dict[tech]=matching_scores_varied_with_fixed_viewpoint_and_varied_illumination
illumination_variations_mismatch_scores_dict[tech]=matching_scores_mismatch_with_fixed_viewpoint_and_varied_illumination
###############################################################################################################################################
#This block of code plots the matching scores for all 8 techniques given illumination variations of MIT Multi-illumination dataset (Fig. 21 of our paper). I have left this code uncommented
#here for your convenience. You would note that it is designed for even number of VPR techniques and works best when all the 8 VPR techniques
#are being used for analysis. You may want to change the exact arrangements of subplots for the best possible readibility for the number of techniques
#you may want to use.
fig,axs=plt.subplots(2,len(VPR_techniques)/2,figsize=(12,6))
row=0
col=0
for itr,tech in enumerate(VPR_techniques):
abc=compute_area_between_the_curves(illumination_positions,illumination_variations_varied_scores_dict[tech],illumination_variations_mismatch_scores_dict[tech])
illumination_variations_ABC_dict[tech]=abc
if (itr<4):
row=0
col=itr
else:
row=1
col=itr-4
axs[row,col].plot(range(1,len(illumination_positions)+1),illumination_variations_varied_scores_dict[tech], label='Same Place')
axs[row,col].plot(range(1,len(illumination_positions)+1),illumination_variations_mismatch_scores_dict[tech], label='Different Place')
# axs[0,itr].set_xticks(viewpoint_positions)
axs[row,col].set(xlabel='Illumination State', ylabel='Matching Score')
axs[row,col].title.set_text(tech+', ABC='+str("%0.2f"%abc))
axs[row,col].legend(loc="upper right")
# plt.plot(viewpoint_variations_varied_scores_dict[tech], label=tech+' Correct Match')
# plt.plot(viewpoint_variations_mismatch_scores_dict[tech], label=tech+' False Match')
# plt.legend()
# plt.title('Viewpoint Varied, ABC='+str(abc))
# plt.figure()
fig.tight_layout()
fig.savefig('Illumination_Invariance_Validation__All_VPRBench_PDF_4x2.pdf') #Saves the figure in the main directory of project.