-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
106 lines (86 loc) · 3.93 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import numpy as np
import copy
from feature_extractor import extractFeature
import torch
from torch.utils.data import Dataset
import os
import pickle
from config import *
import argparse
class MIPDataset(Dataset):
def __init__(self,files,bgdir,reorderFunc, addPosFuc):
insPaths = [ filepaths[0] for filepaths in files]
solPaths = [ filepaths[1] for filepaths in files]
self.insPaths = insPaths
self.solPaths = solPaths
self.bgdir = bgdir
self.reorder = reorderFunc
self.addPos = addPosFuc
os.makedirs(bgdir,exist_ok=True)
def __getitem__(self, index):
inspath = self.insPaths[index]
solpath = self.solPaths[index]
insname = os.path.basename(inspath)
bgpath = os.path.join(self.bgdir,insname+'.bg')
if os.path.exists(bgpath):
data = pickle.load(open(bgpath,'rb'))
else:
inspath = inspath.replace('.gz','')
features = extractFeature(inspath)
features = self.addPos(features)
varNames = np.array(features.varNames)[features.biInds]
reorderData = self.reorder(varNames)
data = {
'groupFeatures':torch.Tensor(features.groupFeatures),
'varFeatures': torch.Tensor(features.varFeatures),
'consFeatures':torch.Tensor(features.consFeatures),
'edgeFeatures':torch.Tensor(features.edgeFeatures),
'edgeInds':torch.Tensor(features.edgeInds.astype(int)).permute(1,0),
'biInds':torch.Tensor(features.biInds).long(),
'nGroup':reorderData['nGroup'],
'nElement':reorderData['nElement'],
'reorderInds':torch.Tensor(reorderData['reorderInds'])
}
if self.solPaths[index] is not None:
solData = pickle.load(open(solpath, 'rb'))
sols = solData['sols']
objs = solData['objs']
varNames = solData['intVarNames'] if 'intVarNames' in solData.keys() else solData['var_names']
varIds = list(range(len(varNames)))
varTuples = list(zip(varNames, varIds))
varTuples.sort(key=lambda t: t[0])
order = [t[-1] for t in varTuples]
sols = sols[:,order]
sols = sols if 'intVarNames' in solData.keys() else sols[:,features.biInds]
data['sols'] = torch.Tensor(sols)
data['objs'] = torch.Tensor(objs)
pickle.dump(data,open(bgpath,'wb'))
return data
def __len__(self):
return len(self.insPaths)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='SMSP')
args = parser.parse_args()
info = confInfo[args.dataset]
ADDPOS = info['addPosFeature']
REORDER = info['reorder']
fileDir = os.path.join(info['trainDir'], 'ins')
solDir = os.path.join(info['trainDir'], 'sol')
bgDir = os.path.join(info['trainDir'], 'bg')
solnames = os.listdir(solDir)
filepaths = [os.path.join(fileDir, solname.replace('.sol', '')) for solname in solnames]
solpaths = [os.path.join(solDir, solname) for solname in solnames]
dataset = MIPDataset(list(zip(filepaths,solpaths)),bgDir,REORDER,ADDPOS)
data_loader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=0)
print('Start constructing bipartite graph ...')
for step,data in enumerate(data_loader):
varFeatures = data['varFeatures']
consFeatures = data['consFeatures']
edgeFeatures = data['edgeFeatures']
edgeInds = data['edgeInds']
sols = data['sols']
objs = data['objs']
reorderInds = data['reorderInds']
print(f'Processed {step}/{len(data_loader)}')
print('Bipartite graph construction finished!')