This repository contains the code for the NeurIPS 2024 paper: SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization.
To run this code, you need the following dependencies:
- Python 3.9
- CPLEX 22.2.0
- PyTorch 2.0.1
To train the model, you can use the following bash commands:
dataset=IP # indicate the dataset
python train.py --expName $dataset --dataset $dataset --opt mean --epoch 50
To evaluate the model, you can use the following commands:
dataset=IP
python eval.py --expName $dataset --dataset $dataset --method fixTop
python eval.py --expName $dataset --dataset $dataset --method PS
python eval.py --expName $dataset --dataset $dataset --method node_selection
If you find this code helpful in your research, please consider citing our paper:
@article{chen2024symilo,
title={SymILO: A Symmetry-Aware Learning Framework for Integer Linear Optimization},
author={Chen, Qian and Zhang, Tianjian and Yang, Linxin and Han, Qingyu and Wang, Akang and Sun, Ruoyu and Luo, Xiaodong and Chang, Tsung-Hui},
journal={NeurIPS},
year={2024}
}