-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnn.py
146 lines (122 loc) · 5.09 KB
/
nn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import torch
import torch_geometric
class GNNPolicy(torch.nn.Module):
'''
from Gasse's model. see https://github.com/ds4dm/ecole/blob/master/examples/branching-imitation/example.ipynb
'''
def __init__(self,nGroup):
super().__init__()
emb_size = 64
cons_nfeats = 3
edge_nfeats = 1
var_nfeats = 6
group_nfeats = nGroup
# GROUP EMBEDDING
self.group_embedding = torch.nn.Sequential(
torch.nn.LayerNorm(group_nfeats),
torch.nn.Linear(group_nfeats, emb_size),
torch.nn.ReLU(),
)
# CONSTRAINT EMBEDDING
self.cons_embedding = torch.nn.Sequential(
torch.nn.LayerNorm(cons_nfeats),
torch.nn.Linear(cons_nfeats, emb_size),
torch.nn.ReLU(),
torch.nn.Linear(emb_size, emb_size),
torch.nn.ReLU(),
)
# EDGE EMBEDDING
self.edge_embedding = torch.nn.Sequential(
torch.nn.LayerNorm(edge_nfeats),
)
# VARIABLE EMBEDDING
self.var_embedding = torch.nn.Sequential(
torch.nn.LayerNorm(var_nfeats),
torch.nn.Linear(var_nfeats, emb_size),
torch.nn.ReLU(),
torch.nn.Linear(emb_size, emb_size),
torch.nn.ReLU(),
)
self.conv_v_to_c = BipartiteGraphConvolution()
self.conv_c_to_v = BipartiteGraphConvolution()
self.conv_v_to_c2 = BipartiteGraphConvolution()
self.conv_c_to_v2 = BipartiteGraphConvolution()
self.output_module = torch.nn.Sequential(
torch.nn.Linear(emb_size, emb_size),
torch.nn.ReLU(),
torch.nn.Linear(emb_size, 1, bias=False),
)
def forward(
self, constraint_features, edge_indices, edge_features, variable_features, group_features
):
reversed_edge_indices = torch.stack([edge_indices[1], edge_indices[0]], dim=0)
group_features = self.group_embedding(group_features)
# First step: linear embedding layers to a common dimension (64)
constraint_features = self.cons_embedding(constraint_features)
edge_features = self.edge_embedding(edge_features)
variable_features = self.var_embedding(variable_features) + group_features
# Two half convolutions
constraint_features = self.conv_v_to_c(
variable_features, reversed_edge_indices, edge_features, constraint_features
)
variable_features = self.conv_c_to_v(
constraint_features, edge_indices, edge_features, variable_features
)
constraint_features = self.conv_v_to_c2(
variable_features, reversed_edge_indices, edge_features, constraint_features
)
variable_features = self.conv_c_to_v2(
constraint_features, edge_indices, edge_features, variable_features
)
# A final MLP on the variable features
output = self.output_module(variable_features).squeeze(-1)
return output
class BipartiteGraphConvolution(torch_geometric.nn.MessagePassing):
"""
The bipartite graph convolution is already provided by pytorch geometric and we merely need
to provide the exact form of the messages being passed.
"""
def __init__(self):
super().__init__("add")
emb_size = 64
self.feature_module_left = torch.nn.Sequential(
torch.nn.Linear(emb_size, emb_size)
)
self.feature_module_edge = torch.nn.Sequential(
torch.nn.Linear(1, emb_size, bias=False)
)
self.feature_module_right = torch.nn.Sequential(
torch.nn.Linear(emb_size, emb_size, bias=False)
)
self.feature_module_final = torch.nn.Sequential(
torch.nn.LayerNorm(emb_size),
torch.nn.ReLU(),
torch.nn.Linear(emb_size, emb_size),
)
self.post_conv_module = torch.nn.Sequential(torch.nn.LayerNorm(emb_size))
# output_layers
self.output_module = torch.nn.Sequential(
torch.nn.Linear(2 * emb_size, emb_size),
torch.nn.ReLU(),
torch.nn.Linear(emb_size, emb_size),
)
def forward(self, left_features, edge_indices, edge_features, right_features):
"""
This method sends the messages, computed in the message method.
"""
output = self.propagate(
edge_indices,
size=(left_features.shape[0], right_features.shape[0]),
node_features=(left_features, right_features),
edge_features=edge_features,
)
return self.output_module(
torch.cat([self.post_conv_module(output), right_features], dim=-1)
)
def message(self, node_features_i, node_features_j, edge_features):
output = self.feature_module_final(
self.feature_module_left(node_features_i)
+ self.feature_module_edge(edge_features)
+ self.feature_module_right(node_features_j)
)
return output