-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
201 lines (153 loc) · 6.46 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import os
os.environ['KMP_DUPLICATE_LIB_OK']="True"
import pyscipopt
from dataset import MIPDataset
from nn import GNNPolicy
from pathlib import Path
import scipy.io as io
import numpy as np
from label_opt import labelOpt,lexOpt
import torch
import torch.nn.functional as F
import torch_geometric
import random
import shutil
from config import *
import argparse
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser()
parser.add_argument('--expName', type=str, default='IP_mean')
parser.add_argument('--dataset', type=str, default='IP')
parser.add_argument('--opt', type=str, default='mean')
parser.add_argument('--epoch', type=int, default=20)
parser.add_argument('--PE', type=str, default='Y')
args = parser.parse_args()
LEARNING_RATE = 0.001
NB_EPOCHS = args.epoch
PRT_FREQUENCY = 1
BATCH_SIZE = 1
TBATCH = 1
NUM_WORKERS = 0
OPT = args.opt
EXP_NAME = args.expName
info = confInfo[args.dataset]
DIR_INS = os.path.join(info['trainDir'],'ins')
DIR_SOL = os.path.join(info['trainDir'],'sols')
DIR_BG = os.path.join(info['trainDir'],'bg')
NGROUP = info['nGroup']
ADDPOS = info['addPosFeature']
REORDER = info['reorder']
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
os.makedirs(args.expName,exist_ok=True)
sample_names = os.listdir(DIR_SOL)
sample_files = [ (os.path.join(DIR_INS,name.replace('.sol','')),os.path.join(DIR_SOL,name)) for name in sample_names]
random.seed(0)
random.shuffle(sample_files)
train_files = sample_files[: int(0.8 * len(sample_files))]
valid_files = sample_files[int(0.8 * len(sample_files)) :]
#copy evaluation instances
#for valid_file in valid_files:
# shutil.copy(valid_file,os.path.join('evaluation',os.path.basename(valid_file)))
train_data = MIPDataset(train_files,DIR_BG,REORDER,ADDPOS)
train_loader = torch.utils.data.DataLoader(train_data, batch_size=BATCH_SIZE, shuffle=True, num_workers=NUM_WORKERS)
valid_data = MIPDataset(valid_files,DIR_BG,REORDER,ADDPOS)
valid_loader = torch.utils.data.DataLoader(valid_data, batch_size=BATCH_SIZE, shuffle=False, num_workers=NUM_WORKERS)
policy = GNNPolicy(NGROUP).to(DEVICE)
def process(policy, data_loader, optimizer=None):
"""
This function will process a whole epoch of training or validation, depending on whether an optimizer is provided.
"""
if optimizer:
policy.train()
else:
policy.eval()
mean_loss = 0
mean_acc = 0
n_samples_processed = 0
with torch.set_grad_enabled(optimizer is not None):
batch_losses = []
for step, batch in enumerate(data_loader):
groupFeatures = batch['groupFeatures'][0].to(DEVICE)
if args.PE != 'Y':
groupFeatures = groupFeatures*0
varFeatures = batch['varFeatures'][0].to(DEVICE)
consFeatures = batch['consFeatures'][0].to(DEVICE)
edgeFeatures = batch['edgeFeatures'][0].to(DEVICE)
edgeInds = batch['edgeInds'][0].to(DEVICE)
biInds = batch['biInds'][0].to(DEVICE)
sols = batch['sols'][0].to(DEVICE)
objs = batch['objs'][0].to(DEVICE)
reorderInds = batch['reorderInds'][0].long().reshape(-1)
nGroup = batch['nGroup'][0]
nElement = batch['nElement'][0]
nBatch = sols.shape[0]
output = policy(
consFeatures,
edgeInds.long(),
edgeFeatures,
varFeatures,
groupFeatures
)
output = output.sigmoid()[biInds]
if OPT=='opt' or OPT == 'ori':
sols = sols[0]
X_hat = output[reorderInds].reshape(nElement,nGroup)
X = sols[reorderInds].reshape(nElement,nGroup)
#
# # compute loss
with torch.set_grad_enabled(True):
opt_func = lexOpt if OPT=='lex' else labelOpt if OPT=='opt' else None
X_bar = opt_func(X_hat.detach()[None,:,:], X.clone()[None,:,:],device=DEVICE)[0] if opt_func is not None else X
sols[reorderInds] = X_bar.reshape(-1)
elif OPT == 'dis':
objs = objs if objs.max()<20 else objs/objs.max()
expobj = torch.exp(-objs)
weights = expobj/expobj.sum(dim=-1)
sols = sols * weights[:,None]
sols = sols.sum(dim=0)
elif OPT == 'mean':
sols = sols.mean(dim=0)
else:
raise NotImplemented
pos_loss = -torch.log(output[reorderInds] + 0.00001) * (sols[reorderInds])
neg_loss = -torch.log(1 - output[reorderInds] + 0.00001) * (1-sols[reorderInds])
loss = pos_loss.sum() + neg_loss.sum()
if optimizer is not None:
loss.backward()
if step%TBATCH == TBATCH-1 or step==len(data_loader)-1:
if optimizer is not None:
optimizer.step()
optimizer.zero_grad()
# output
if step%PRT_FREQUENCY==0:
mod = 'train' if optimizer else 'valid'
print('Epoch {} {} [{}/{}] loss {:.6f}'.format( epoch, mod, step,len(data_loader),loss.item()))
mean_loss += loss.item() * nBatch
#mean_acc += accuracy * batch.num_graphs
n_samples_processed += nBatch
mean_loss /= n_samples_processed
mean_acc /= n_samples_processed
return mean_loss
optimizer = torch.optim.Adam(policy.parameters(), lr=LEARNING_RATE)
train_losses = []
train_accs = []
valid_losses = []
valid_accs = []
best_val_loss = 99999
for epoch in range(NB_EPOCHS):
train_loss = process(policy, train_loader, optimizer)
print(f"Epoch {epoch} Train loss: {train_loss:0.3f}")
valid_loss = process(policy, valid_loader, None)
print(f"Epoch {epoch} Valid loss: {valid_loss:0.3f}")
if valid_loss<best_val_loss:
best_val_loss = valid_loss
torch.save(policy.state_dict(),os.path.join(EXP_NAME,'model_best.pth'))
torch.save(policy.state_dict(), os.path.join(EXP_NAME,'model_last.pth'))
train_losses.append(train_loss)
valid_losses.append(valid_loss)
io.savemat(os.path.join(EXP_NAME,'loss_record.mat'),{
'train_loss':np.array(train_losses),
'valid_loss':np.array(valid_losses)
})
print('done')