-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add the initial data into the folder.
- Loading branch information
1 parent
7649517
commit f077e35
Showing
14 changed files
with
7,337 additions
and
0 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
1,923 changes: 1,923 additions & 0 deletions
1,923
Bio-Data-Design/AllSamples.MIGHT.Passed.samples.txt
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,233 @@ | ||
from pathlib import Path | ||
|
||
import numpy as np | ||
from joblib import Parallel, delayed | ||
from sklearn.model_selection import StratifiedShuffleSplit | ||
from treeple import HonestForestClassifier | ||
from treeple.datasets import (make_trunk_classification, | ||
make_trunk_mixture_classification) | ||
from treeple.stats import PermutationHonestForestClassifier, build_oob_forest | ||
from treeple.stats.utils import _mutual_information | ||
from treeple.tree import MultiViewDecisionTreeClassifier | ||
from sklearn.metrics import roc_auc_score, roc_curve | ||
from sklearn.calibration import CalibratedClassifierCV | ||
from sklearn.model_selection import StratifiedKFold, train_test_split | ||
|
||
|
||
from sklearn.ensemble import RandomForestClassifier | ||
from sklearn.linear_model import LogisticRegression | ||
from sklearn.neighbors import KNeighborsClassifier | ||
from sklearn.svm import SVC | ||
import os | ||
# from random import shuffle | ||
|
||
import pandas as pd | ||
|
||
|
||
n_estimators = 000 | ||
max_features = 0.3 | ||
|
||
MODEL_NAMES = { | ||
"might": { | ||
"n_estimators": n_estimators, | ||
"honest_fraction": 0.5, | ||
"n_jobs": 40, | ||
"bootstrap": True, | ||
"stratify": True, | ||
"max_samples": 1.6, | ||
"max_features": 0.3, | ||
"tree_estimator": MultiViewDecisionTreeClassifier(), | ||
}, | ||
"rf": { | ||
"n_estimators": int(n_estimators/5), | ||
"max_features": 0.3, | ||
}, | ||
"knn": { | ||
# XXX: above, we use sqrt of the total number of samples to allow | ||
# scaling wrt the number of samples | ||
# "n_neighbors": 5, | ||
}, | ||
"svm": { | ||
"probability": True, | ||
}, | ||
"lr": { | ||
"max_iter": 1000, | ||
"penalty": "l1", | ||
"solver": "liblinear", | ||
} | ||
} | ||
might_kwargs = MODEL_NAMES["might"] | ||
|
||
# filelist = open("filelist.txt", "r").read().split("\n")[:-1] | ||
|
||
|
||
# get the sample list | ||
sample_list_file = "ManuscriptFeatureMatrices/AllSamples.MIGHT.Passed.samples.txt" | ||
sample_list = pd.read_csv(sample_list_file, sep=" ", header=None) | ||
sample_list.columns = ["library", "sample_id", "cohort"] | ||
sample_list.head() | ||
# get the sample_ids where cohort is Cohort1 | ||
cohort1 = sample_list[sample_list["cohort"] == "Cohort1"]["sample_id"] | ||
print(len(cohort1)) | ||
cohort2 = sample_list[sample_list["cohort"] == "Cohort2"]["sample_id"] | ||
print(len(cohort2)) | ||
PON = sample_list[sample_list["cohort"] == "PanelOfNormals"]["sample_id"] | ||
# print(cohort1) | ||
sample_list["cohort"].unique() | ||
|
||
# define a function to get X and y given a file | ||
|
||
def get_X_y(f, root="ManuscriptFeatureMatrices/", cohort=cohort1, verbose=False): | ||
df = pd.read_csv(root + f) | ||
non_features = ['Run', 'Library', 'Cancer Status', 'Tumor type', 'Stage', 'Library volume (uL)', 'Library Volume', 'UIDs Used', 'Experiment', 'P7', 'P7 Primer', 'MAF'] | ||
sample_ids = df["Sample"] | ||
# print(sample_ids) | ||
# if sample is contains "Run" column, remove it | ||
# print(len(sample_ids)) | ||
|
||
for i, sample_id in enumerate(sample_ids): | ||
if "." in sample_id: | ||
# print(sample_id.split(".")[1]) | ||
if "Wise" in f or 'ichorCNA' in f: | ||
sample_ids[i] = sample_id | ||
else: | ||
sample_ids[i] = sample_id.split(".")[1] | ||
target = 'Cancer Status' | ||
y = df[target] | ||
# convert the labels to 0 and 1 | ||
y = y.replace("Healthy", 0) | ||
y = y.replace("Cancer", 1) | ||
# remove the non-feature columns if they exist | ||
for col in non_features: | ||
if col in df.columns: | ||
df = df.drop(col, axis=1) | ||
nan_cols = df.isnull().all(axis=0).to_numpy() | ||
# drop the columns with all nan values | ||
df = df.loc[:, ~nan_cols] | ||
# if cohort is not None, filter the samples | ||
if cohort is not None: | ||
# filter the rows with cohort1 samples | ||
X = df[sample_ids.isin(cohort)] | ||
# print(X.shape) | ||
y = y[sample_ids.isin(cohort)] | ||
else: | ||
X = df | ||
if "Wise" in f: | ||
# replace nans with zero | ||
# print('Wise') | ||
X = X.fillna(0) | ||
# impute the nan values with the mean of the column | ||
X.iloc[:,1] = X.iloc[:,1].fillna(X.iloc[:,1].mean(axis=0)) | ||
# print(X.shape) | ||
# check if there are nan values | ||
# nan_rows = X.isnull().any(axis=1) | ||
nan_cols = X.isnull().all(axis=0) | ||
# remove the columns with all nan values | ||
X = X.loc[:, ~nan_cols] | ||
# print(X.shape) | ||
if verbose: | ||
if nan_cols.sum() > 0: | ||
print(f) | ||
print(f"nan_cols: {nan_cols.sum()}") | ||
print(f"X shape: {X.shape}, y shape: {y.shape}") | ||
else: | ||
print(f) | ||
print(f"X shape: {X.shape}, y shape: {y.shape}") | ||
# X = X.dropna() | ||
# y = y.drop(nan_rows.index) | ||
|
||
return X, y | ||
|
||
def stratified_train_ml(clf,X,y): | ||
n_samples = X.shape[0] | ||
cv = StratifiedKFold(n_splits=5, shuffle=True) | ||
POS = np.zeros((len(y), 3)) | ||
|
||
for idx, (train_ix, test_ix) in enumerate(cv.split(X, y)): | ||
X_train, X_test = X[train_ix, :], X[test_ix, :] | ||
y_train, y_test = y[train_ix], y[test_ix] | ||
|
||
### Split Training Set into Fitting Set (40%) and Calibarating Set (40%) | ||
train_idx = np.arange( | ||
X_train.shape[0] | ||
) # use index array to split, so we can use the same index for the permuted array as well | ||
fit_idx, cal_idx = train_test_split( | ||
train_idx, test_size=0.5, random_state=idx, stratify=y_train | ||
) | ||
X_fit, X_cal, y_fit, y_cal = ( | ||
X_train[fit_idx], | ||
X_train[cal_idx], | ||
y_train[fit_idx], | ||
y_train[cal_idx], | ||
) | ||
|
||
POS[test_ix, 0] = y_test | ||
clf.fit(X_fit, y_fit) | ||
if X_cal.shape[0] <= 1000: | ||
calibrated_model = CalibratedClassifierCV( | ||
clf, cv="prefit", method="sigmoid" | ||
) | ||
else: | ||
calibrated_model = CalibratedClassifierCV( | ||
clf, cv="prefit", method="isotonic" | ||
) | ||
calibrated_model.fit(X_cal, y_cal) | ||
posterior = calibrated_model.predict_proba(X_test) | ||
|
||
POS[test_ix, 1:] = posterior | ||
return clf,POS | ||
|
||
|
||
def run_alog(f1,cohort = cohort1,model_name='might'): | ||
|
||
X_1,y_1 = get_X_y('{}.csv'.format(f1), cohort=cohort, verbose=True) | ||
X = X_1.iloc[:,1:] | ||
|
||
if model_name == 'might': | ||
est = HonestForestClassifier(**might_kwargs) | ||
|
||
elif model_name == "rf": | ||
est = RandomForestClassifier( **MODEL_NAMES[model_name],n_jobs = 40) | ||
|
||
elif "knn" in model_name: | ||
est = KNeighborsClassifier(n_neighbors=int(np.sqrt(X_combine.shape[0]) + 1),) | ||
|
||
elif model_name == "svm": | ||
est = SVC(**MODEL_NAMES[model_name]) | ||
|
||
elif model_name == "lr": | ||
est = LogisticRegression(**MODEL_NAMES[model_name]) | ||
|
||
X_combine = X_combine.fillna(0) | ||
|
||
if model_name == 'might': | ||
est, posterior_arr = build_oob_forest( | ||
est, | ||
X, | ||
y_1, | ||
verbose=False, | ||
) | ||
else: | ||
est,posterior_arr = stratified_train_ml(est,np.array(X_combine),np.array(y_1)) | ||
if model_name == 'might': | ||
POS = np.nanmean(posterior_arr,axis = 0) | ||
|
||
else: | ||
POS = posterior_arr | ||
|
||
fpr, tpr, thresholds = roc_curve(y_1, POS[:,-1], pos_label=1, drop_intermediate=False,) | ||
S98 = np.max(tpr[fpr <= 0.02]) | ||
|
||
output_fname = ('/'f"{model_name}.npz") | ||
print(model_name,f1) | ||
np.savez_compressed( | ||
output_fname, | ||
model_name = model_name, | ||
y=y_1, | ||
S98 = S98, | ||
posterior_arr=posterior_arr, | ||
) | ||
return S98 | ||
|
||
Parallel(n_jobs=20)(delayed(run_alog)(f1 = 'WiseCondorX.Wise-1',cohort = cohort1,model_name= modelname) | ||
for modelname in ['might','rf','knn','lr']) |
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.