An enterprise-grade automated customer support system that uses N8N, OpenAI, and Supabase to intelligently triage, route, and respond to customer inquiries at scale.
An Intelligent Support Triage System (ISTS) that automatically:
- Receives customer support requests from multiple channels (email, Slack, web forms)
- Uses AI to analyze, categorize, and prioritize each ticket
- Routes tickets to the right team/agent based on expertise and workload
- Generates AI-assisted responses and auto-resolves simple issues
- Monitors SLA compliance and provides real-time analytics
1. Multi-Channel Intake
- Email (IMAP), Slack events, HTTP webhooks
- Automatic deduplication (prevents duplicate tickets)
- Spam detection with AI
2. AI-Powered Analysis
- Category classification (billing, technical, account, general)
- Sentiment analysis (angry, frustrated, neutral, happy)
- Priority scoring (urgent, high, medium, low)
- Intent extraction and escalation detection
3. Smart Routing
- Rule-based routing to appropriate teams
- Load balancing across available agents
- VIP customer escalation
- Auto-resolution for simple queries (password reset, invoice requests)
4. Response Generation
- AI-generated draft responses using GPT-4
- Knowledge base integration for accurate answers
- Human-in-the-loop approval for high-stakes responses
- Auto-send for high-confidence simple issues
5. Monitoring & Analytics
- SLA tracking with breach alerts
- Real-time dashboard metrics
- Daily performance reports
- AI accuracy monitoring
βββββββββββββββββββββββββββββββββββββββββββββββ
β INTAKE CHANNELS β
β Email β Slack β Web Forms β API Webhooks β
ββββββββββ¬βββββββββββββββββββββββββββββββββββββ
β
βΌ
βββββββββββββββββββββββββββββββββββββββββββββββ
β N8N ORCHESTRATION LAYER β
β Workflow Engine (6 core workflows) β
ββββββββββ¬βββββββββββββββββββββββββββββββββββββ
β
ββββββ΄βββββ
βΌ βΌ
βββββββββ ββββββββββββββ
βOpenAI β β Supabase β
β API β β (Postgres) β
βββββββββ ββββββββββββββ
β
βΌ
βββββββββββββββ
β OUTPUTS β
β Slack, Emailβ
β Webhooks β
βββββββββββββββ
| Component | Technology |
|---|---|
| Workflow Engine | N8N (self-hosted or cloud) |
| AI/ML | OpenAI GPT-4o + GPT-4o-mini |
| Database | Supabase (managed Postgres) |
| Notifications | Slack API |
| IMAP/SMTP | |
| Monitoring | Database logging + optional Grafana |
Triggers:
- IMAP Email Trigger (polls every 2 min)
- Slack Event Trigger (#customer-support channel)
- Webhook (POST /api/tickets/create)
Flow:
Trigger β Normalize Input β Generate Hash β Check Duplicate
β
[If New]
β
Spam Check (AI)
β
[If Legit]
β
Create Ticket Record
β
Log Event
β
Trigger AI Triage
Key Nodes:
- Email Trigger: IMAP connection to [email protected]
- Function - Normalize: Converts all channels to standard format
- Function - Generate Hash: SHA-256 of content for deduplication
- Postgres - Check Duplicate: Query by hash within 24h window
- OpenAI - Spam Detection: gpt-4o-mini, confidence >0.9
- Postgres - Create Ticket: Insert with status='new'
- Postgres - Log Event: Audit trail entry
Error Handling:
- Retry 3x with exponential backoff
- Dead letter queue for failures
- Slack alert on critical errors
Trigger: Postgres trigger (new tickets) or N8N schedule polling
Flow:
New Ticket β Fetch Context β Build AI Context
β
ββββββββββββββββββββββββΌβββββββββββββββββββ
βΌ βΌ βΌ
Classification Sentiment Priority
(gpt-4o-mini) (gpt-4o-mini) (gpt-4o-mini)
β β β
ββββββββββββββββββββββββ΄βββββββββββββββββββ
β
Merge Results
β
Store Analysis
β
Update Ticket
β
Trigger Routing
AI Prompts (Simplified):
Classification:
System: You are a ticket classifier. Categories: billing, technical, account, general.
Return JSON: { "category": "...", "sub_category": "...", "confidence": 0.95 }
User: Classify this ticket:
Subject: [subject]
Body: [body]
Customer History: [last 3 tickets]
Sentiment:
System: Analyze sentiment. Emotions: angry, frustrated, confused, neutral, satisfied, happy.
Intensity: 1-10 scale. Flag escalation if intensity >8 and negative.
Return JSON: { "emotion": "...", "intensity": 7, "escalation_needed": true }
User: Analyze: [ticket content]
Priority:
System: Score priority based on: business impact, customer tier, sentiment, urgency keywords.
Levels: urgent, high, medium, low
Return JSON: { "priority": "high", "urgency_score": 8, "reasoning": "..." }
User: Ticket: [content]
Sentiment: [emotion] (intensity: [X]/10)
Customer Tier: [tier]
Parallel Processing: All 3 AI calls run simultaneously, then merge results
Flow:
Analyzed Ticket β Check Auto-Resolve Eligibility
β
[If Simple + High Confidence]
β
Auto-Response β Send β Close
[If Needs Human]
β
Fetch Routing Rules
β
Check Escalation Flags
β
Find Available Agent
β
Assign Ticket
β
Notify via Slack
β
Start SLA Timer
Auto-Resolve Criteria:
canAutoResolve = (
confidence > 0.85 &&
sub_category in ['password_reset', 'invoice_request', 'documentation'] &&
sentiment_intensity < 7 &&
body.length < 500
)Agent Selection Logic:
-- Find least-loaded agent with matching skills
SELECT a.id, a.name, COUNT(t.id) as current_load
FROM agents a
LEFT JOIN tickets t ON t.assigned_to = a.id AND t.status IN ('assigned', 'in_progress')
WHERE a.team_id = [matched_team]
AND a.is_available = true
AND (a.skill_level = 'senior' OR [priority] != 'urgent')
GROUP BY a.id
ORDER BY current_load ASC, RANDOM()
LIMIT 1Slack Notification:
π« New Ticket Assigned: #12345
From: John Doe ([email protected])
Subject: Cannot log into account
Priority: High β οΈ
Category: account > cannot_login
Sentiment: frustrated (7/10)
AI Insights:
- Customer tried multiple password resets
- Third contact this week - needs escalation
- SLA Deadline: 4 hours
[View Ticket] [Reassign] [Escalate]
Flow:
Request Response β Fetch Ticket + History β Search Knowledge Base
β
Generate AI Response
(gpt-4o, temp=0.7)
β
Quality Check
β
βββββββββββββββββββββββββ΄βββββββββββββββ
βΌ βΌ
[Auto-Approve] [Needs Review]
β β
Send Immediately Save as Draft
β β
Log Response Notify Agent
β
Schedule Follow-up (24h)
AI Response Prompt:
System: You are a customer support agent for [Company].
Personality: Friendly, empathetic, solution-oriented
Guidelines:
- Personalize with customer name
- Acknowledge their issue with empathy
- Provide clear, actionable solution
- Offer additional help
- 150-300 words
Structure:
1. Greeting
2. Acknowledgment
3. Solution/Next steps
4. Additional resources
5. Closing
User:
Customer: [name]
Ticket: [subject and body]
Sentiment: [emotion] (intensity: [X]/10)
Category: [category]
Customer History: [recent tickets]
Relevant KB: [articles]
Draft a response.
Quality Checks Before Sending:
qualityChecks = {
has_greeting: /^(hi|hello|dear)/i.test(response),
has_closing: /(regards|best|thanks)/i.test(response),
length_ok: response.length >= 150 && response.length <= 1000,
no_placeholders: !response.includes('[INSERT'),
mentions_name: response.includes(customerFirstName),
no_unauthorized_promises: !response.match(/will refund|guarantee/)
}
if (allPass && confidence > 0.9) {
sendImmediately()
} else {
saveDraftForReview()
}Trigger: Schedule (every 5 minutes)
Flow:
Scheduled Run β Fetch Active Tickets with SLA
β
[For Each Ticket]
β
Calculate Time Remaining
β
βββββββββββββββββΌββββββββββββββββ
βΌ βΌ βΌ
50% Time 80% Elapsed 100% Breach
β β β
Info Alert Warning Alert Critical Alert
β β β
Slack Notify Slack + Email Escalate + Log
SLA Thresholds:
- Urgent: 1h first response, 4h resolution
- High: 4h first response, 8h resolution
- Medium: 8h first response, 24h resolution
- Low: 24h first response, 72h resolution
Trigger: Schedule (daily at 9 AM)
Flow:
Daily Trigger β Calculate Metrics β Aggregate by Category/Priority
β
Store in analytics_daily
β
Generate Report
β
Send to Slack
β
[Optional: Export to Dashboard]
Metrics Calculated:
-- Daily aggregation query
WITH daily_stats AS (
SELECT
DATE(created_at) as date,
COUNT(*) as total_tickets,
COUNT(*) FILTER (WHERE status = 'resolved') as resolved,
AVG(EXTRACT(EPOCH FROM (first_response_at - created_at))/60) as avg_first_response_min,
AVG(EXTRACT(EPOCH FROM (resolved_at - created_at))/3600) as avg_resolution_hours,
COUNT(*) FILTER (WHERE sla_deadline < resolved_at) as sla_breaches,
jsonb_object_agg(category, category_count) as by_category
FROM tickets
WHERE created_at >= CURRENT_DATE - INTERVAL '1 day'
GROUP BY DATE(created_at)
)
SELECT * FROM daily_stats;Slack Report:
π Daily Support Metrics - Dec 15, 2024
Total Tickets: 247
Resolved: 201 (81%)
Auto-Resolved: 95 (38%)
β±οΈ Performance:
Avg First Response: 32 min
Avg Resolution: 4.2 hours
β
SLA Compliance: 94%
β Breaches: 14 tickets
π₯ Top Issues:
1. billing > refund_request (43 tickets)
2. technical > bug_report (38 tickets)
3. account > password_reset (31 tickets)
π€ AI Metrics:
Classification Accuracy: 92%
AI Responses Generated: 112
AI Responses Sent: 95 (85% approval rate)
Total AI Cost: $4.87
[View Full Dashboard β]
// Wrapper for all OpenAI calls
async function callOpenAI(config) {
try {
return await openai.chat.completions.create(config)
} catch (error) {
// Rate limit β retry with backoff
if (error.code === 'rate_limit_error') {
await sleep(Math.pow(2, attempt) * 1000)
return retry()
}
// Context too long β truncate
if (error.code === 'context_length_exceeded') {
config.messages[1].content = truncate(config.messages[1].content, 0.7)
return retry()
}
// API error β use fallback
return fallbackClassification(ticket)
}
}
// Rule-based fallback
function fallbackClassification(ticket) {
const text = (ticket.subject + ' ' + ticket.body).toLowerCase()
if (text.match(/refund|charge|payment|invoice/))
return { category: 'billing', confidence: 0.6 }
if (text.match(/bug|error|broken|crash/))
return { category: 'technical', confidence: 0.6 }
if (text.match(/password|login|access/))
return { category: 'account', confidence: 0.6 }
return { category: 'general', confidence: 0.5 }
}1. Caching Similar Tickets:
// Hash ticket content, check if analyzed in last 24h
const hash = sha256(ticket.subject + ticket.body.substring(0, 200))
const cached = await db.query(
'SELECT * FROM ai_analysis WHERE content_hash = $1 AND created_at > NOW() - INTERVAL \'24 hours\'',
[hash]
)
if (cached.rows.length > 0) return cached.rows[0] // Reuse2. Batch Processing:
- Process 10 tickets at once when load is high
- Reduces API overhead
3. Smart Model Selection:
- Use gpt-4o-mini for all classification tasks (60x cheaper than GPT-4)
- Reserve gpt-4o only for customer-facing responses
CREATE TABLE tickets (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
idempotency_key VARCHAR(64) UNIQUE NOT NULL, -- Deduplication
-- Source
channel VARCHAR(20) NOT NULL, -- email, slack, api, web
sender_email VARCHAR(255) NOT NULL,
sender_name VARCHAR(255),
-- Content
subject TEXT NOT NULL,
body TEXT NOT NULL,
attachments JSONB DEFAULT '[]',
-- Classification
category VARCHAR(50), -- billing, technical, account, general
sub_category VARCHAR(50),
tags TEXT[],
-- Status
status VARCHAR(30) DEFAULT 'new', -- new, analyzing, analyzed, assigned, in_progress, resolved, closed
priority VARCHAR(20) DEFAULT 'medium', -- urgent, high, medium, low
-- Assignment
assigned_to UUID REFERENCES agents(id),
assigned_at TIMESTAMP WITH TIME ZONE,
team_id UUID REFERENCES teams(id),
-- SLA
sla_deadline TIMESTAMP WITH TIME ZONE,
first_response_at TIMESTAMP WITH TIME ZONE,
resolved_at TIMESTAMP WITH TIME ZONE,
-- Flags
is_spam BOOLEAN DEFAULT false,
is_escalated BOOLEAN DEFAULT false,
-- Metadata
raw_metadata JSONB,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW(),
updated_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Indexes for performance
CREATE INDEX idx_tickets_status ON tickets(status);
CREATE INDEX idx_tickets_priority ON tickets(priority);
CREATE INDEX idx_tickets_assigned_to ON tickets(assigned_to);
CREATE INDEX idx_tickets_sla_deadline ON tickets(sla_deadline) WHERE status NOT IN ('resolved', 'closed');CREATE TABLE ai_analysis (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
ticket_id UUID REFERENCES tickets(id) ON DELETE CASCADE,
-- Classification
category VARCHAR(50) NOT NULL,
sub_category VARCHAR(50),
confidence NUMERIC(3,2) NOT NULL, -- 0.00 to 1.00
-- Sentiment
sentiment_emotion VARCHAR(30),
sentiment_intensity INTEGER CHECK (sentiment_intensity BETWEEN 1 AND 10),
-- Priority
priority_recommendation VARCHAR(20),
urgency_score INTEGER,
escalation_flag BOOLEAN DEFAULT false,
-- AI reasoning (for transparency)
reasoning JSONB,
-- Model info
model_name VARCHAR(100),
prompt_tokens INTEGER,
completion_tokens INTEGER,
total_cost NUMERIC(10,6),
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);CREATE TABLE ticket_events (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
ticket_id UUID REFERENCES tickets(id) ON DELETE CASCADE,
event_type VARCHAR(50) NOT NULL, -- created, analyzed, assigned, status_changed, etc.
event_data JSONB,
actor_type VARCHAR(20), -- system, ai, agent, customer
actor_id UUID,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
CREATE INDEX idx_ticket_events_ticket_id ON ticket_events(ticket_id, created_at DESC);CREATE TABLE agents (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
email VARCHAR(255) UNIQUE NOT NULL,
name VARCHAR(255) NOT NULL,
team_id UUID REFERENCES teams(id),
role VARCHAR(50) DEFAULT 'agent', -- agent, senior_agent, manager
skill_level VARCHAR(20) DEFAULT 'mid', -- junior, mid, senior, expert
specializations TEXT[], -- ['billing', 'technical']
max_concurrent_tickets INTEGER DEFAULT 10,
is_available BOOLEAN DEFAULT true,
slack_user_id VARCHAR(50),
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);CREATE TABLE teams (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
name VARCHAR(100) NOT NULL,
handles_categories TEXT[], -- ['billing', 'technical']
slack_channel_id VARCHAR(50),
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);
-- Seed data
INSERT INTO teams (name, handles_categories, slack_channel_id) VALUES
('Billing Team', ARRAY['billing'], 'C01234ABC'),
('Technical Support', ARRAY['technical'], 'C01234DEF'),
('Account Management', ARRAY['account'], 'C01234GHI'),
('General Support', ARRAY['general'], 'C01234JKL');CREATE TABLE routing_rules (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
name VARCHAR(100) NOT NULL,
-- Match criteria
category VARCHAR(50),
priority VARCHAR(20),
-- Target
team_id UUID REFERENCES teams(id),
rule_priority INTEGER DEFAULT 100, -- Lower = higher priority
is_active BOOLEAN DEFAULT true,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);CREATE TABLE sla_tracking (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
ticket_id UUID REFERENCES tickets(id) ON DELETE CASCADE,
priority VARCHAR(20) NOT NULL,
first_response_deadline TIMESTAMP WITH TIME ZONE NOT NULL,
resolution_deadline TIMESTAMP WITH TIME ZONE NOT NULL,
status VARCHAR(20) DEFAULT 'active', -- active, met, breached
alert_50_sent BOOLEAN DEFAULT false,
alert_80_sent BOOLEAN DEFAULT false,
breach_alert_sent BOOLEAN DEFAULT false,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);CREATE TABLE responses (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
ticket_id UUID REFERENCES tickets(id) ON DELETE CASCADE,
direction VARCHAR(20) NOT NULL, -- outbound, inbound
channel VARCHAR(20) NOT NULL,
body TEXT NOT NULL,
sender_type VARCHAR(20), -- agent, customer, ai
sender_id UUID,
was_ai_generated BOOLEAN DEFAULT false,
ai_draft BOOLEAN DEFAULT false, -- Saved for review vs sent
sent_at TIMESTAMP WITH TIME ZONE,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);CREATE TABLE error_logs (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
workflow_name VARCHAR(100),
node_name VARCHAR(100),
error_type VARCHAR(100),
error_message TEXT,
ticket_id UUID REFERENCES tickets(id),
severity VARCHAR(20) DEFAULT 'error',
resolved BOOLEAN DEFAULT false,
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);CREATE TABLE analytics_daily (
id UUID PRIMARY KEY DEFAULT gen_random_uuid(),
date DATE UNIQUE NOT NULL,
total_tickets INTEGER,
tickets_resolved INTEGER,
tickets_auto_resolved INTEGER,
avg_first_response_minutes NUMERIC(10,2),
avg_resolution_hours NUMERIC(10,2),
sla_compliance_rate NUMERIC(5,2),
sla_breaches INTEGER,
tickets_by_category JSONB,
tickets_by_priority JSONB,
ai_classification_accuracy NUMERIC(5,2),
total_ai_cost NUMERIC(10,4),
created_at TIMESTAMP WITH TIME ZONE DEFAULT NOW()
);-- Active tickets with AI analysis
CREATE VIEW active_tickets_view AS
SELECT
t.*,
a.category as ai_category,
a.confidence,
a.sentiment_emotion,
ag.name as agent_name
FROM tickets t
LEFT JOIN ai_analysis a ON a.ticket_id = t.id
LEFT JOIN agents ag ON ag.id = t.assigned_to
WHERE t.status NOT IN ('resolved', 'closed')
ORDER BY t.priority, t.created_at;
-- Agent workload
CREATE VIEW agent_workload AS
SELECT
a.id,
a.name,
COUNT(t.id) as current_tickets,
a.max_concurrent_tickets - COUNT(t.id) as capacity_remaining
FROM agents a
LEFT JOIN tickets t ON t.assigned_to = a.id AND t.status IN ('assigned', 'in_progress')
GROUP BY a.id
ORDER BY current_tickets DESC;1. Multi-Language Support
- Detect customer language with OpenAI
- Auto-translate to English for processing
- Respond in customer's original language
- Store translations in database
2. Knowledge Base with RAG
- Create KB articles table with embeddings
- Use OpenAI embeddings (text-embedding-3-small)
- Implement vector similarity search (pgvector)
- Inject relevant KB articles into AI context
3. Customer Portal
- Simple Next.js/React frontend
- Submit tickets via web form
- View ticket status and history
- Webhook to N8N on submission
4. Advanced Analytics Dashboard
- Set up Metabase or Grafana
- Connect to Supabase database
- Create charts: tickets over time, category breakdown, SLA compliance
- Agent performance leaderboard
5. Sentiment Trend Analysis
- Track sentiment changes over time
- Alert if negative sentiment spike detected
- Identify products/features causing issues
- Proactive reach-out to frustrated customers
6. A/B Testing Framework
- Test different AI prompts
- Track which performs better
- Automatically promote winning variant
- Store test results in database
7. Agent Performance Metrics
- Track: avg resolution time, customer satisfaction, tickets handled
- Leaderboard in Slack
- Coaching recommendations based on data
8. Smart Ticket Merging
- Detect duplicate/related tickets from same customer
- Suggest merging to agent
- Link related tickets automatically
9. Proactive Outreach
- Detect customers with multiple unresolved issues
- Auto-escalate to account manager
- Generate personalized "check-in" email
10. Voice/Phone Integration
- Integrate Twilio for phone support
- Transcribe calls with Whisper API
- Create tickets from phone calls
- Same AI triage process
11. Multi-Tenant Architecture
- Support multiple companies in one system
- Row-level security in Supabase
- Separate Slack workspaces per tenant
- White-label customization
12. Custom ML Model
- Fine-tune GPT-4 on your historical tickets
- Compare performance vs base model
- Document cost/accuracy tradeoffs
13. Compliance & Security
- PII detection and redaction
- GDPR compliance (data export, deletion)
- SOC 2 audit logging
- Encryption at rest
-
Immediate Next Steps:
# 1. Clone or create project directory mkdir intelligent-support-system && cd intelligent-support-system # 2. Set up Supabase (or local Postgres) # β Go to supabase.com, create free project # 3. Set up N8N # Option A: Cloud (easiest) # β Go to n8n.cloud, create account # Option B: Docker (local) docker run -it --rm \ --name n8n \ -p 5678:5678 \ -v ~/.n8n:/home/node/.n8n \ n8nio/n8n # 4. Get OpenAI API key # β Go to platform.openai.com, create API key
-
Copy Database Schema:
- Copy all CREATE TABLE statements from "Database Schema" section
- Run in Supabase SQL Editor
- Verify tables created successfully
-
Start with Workflow 1:
- Open N8N
- Create new workflow "01-ticket-intake"
- Follow build plan step-by-step
- Test each node as you add it
-
Test Early, Test Often:
- Don't wait until everything is built
- Test each workflow independently
- Use sample data provided
If you encounter issues:
- Check N8N documentation: https://docs.n8n.io
- OpenAI API docs: https://platform.openai.com/docs
- Supabase docs: https://supabase.com/docs
Common issues:
- OpenAI rate limits: Add retry logic, use exponential backoff
- N8N workflow timeout: Increase timeout in settings, optimize queries
- Postgres connection fails: Check firewall, verify credentials
.