Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update docsite embeddings automatically #197

Draft
wants to merge 1 commit into
base: assistant-docsite-rag
Choose a base branch
from
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
38 changes: 33 additions & 5 deletions services/search_docsite/search_docsite.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
import os
from dotenv import load_dotenv
from pinecone import Pinecone
from langchain_pinecone import PineconeVectorStore
from langchain_openai import OpenAIEmbeddings
from util import create_logger, ApolloError
from embeddings.embeddings import SearchResult
logger = create_logger("DocsiteSearch")


class DocsiteSearch:
"""
Initialize the docsite vectorstore and search it with optional metadata filters.
Expand All @@ -15,10 +17,15 @@ class DocsiteSearch:
:param default_top_k: Default number of results to return (default: 5)
:param embeddings: LangChain embedding type (default: OpenAIEmbeddings())
"""
def __init__(self, collection_name, index_name="docsite", default_top_k=5, embeddings=OpenAIEmbeddings()):
self.collection_name = collection_name
def __init__(self, collection_name=None, index_name="docsite", default_top_k=5, embeddings=OpenAIEmbeddings()):
self.index_client = index_name
self.default_top_k = default_top_k

if collection_name is None:
logger.info("Collection name not provided; retrieving the most recent collection name.")
collection_name = self._get_most_recent_namespace()

self.collection_name = collection_name
self.vectorstore = PineconeVectorStore(index_name=index_name, namespace=collection_name, embedding=embeddings)

def search(self, query, top_k=None, threshold=None, strategy='semantic', doc_title=None, docs_type=None):
Expand Down Expand Up @@ -90,25 +97,46 @@ def _build_filter(self, **kwargs):

# If multiple conditions, combine them with $and
return {"$and": conditions}

def _get_most_recent_namespace(self):
"""Retrieve the most recent docsite upload by collection name from Pinecone."""

pc = Pinecone(api_key=os.environ.get("PINECONE_API_KEY"))
index = pc.Index("docsite")
index_stats = index.describe_index_stats()
namespaces = index_stats.get('namespaces', {}).keys()

valid_namespaces = sorted(
(ns for ns in namespaces if ns.startswith("docsite-") and ns[8:].isdigit() and len(ns) == 16),
reverse=True
)

if not valid_namespaces:
raise ApolloError(404, "No valid namespaces found in the index.", type="NOT_FOUND")

most_recent_namespace = valid_namespaces[0]
logger.info(f"Most recent docsite collection name found: {most_recent_namespace}")

return most_recent_namespace


def main(data):
logger.info("Starting...")

required_fields = ["query", "collection_name"]
required_fields = ["query"]

missing = [field for field in required_fields if field not in data]

if missing:
logger.error(f"Missing required fields in data: {', '.join(missing)}")
return

index_params = {"collection_name": data["collection_name"]}
index_params = {}
search_params = {"query": data["query"]}

# Add optional parameters
optional_search_params = ["docs_type", "doc_title", "top_k", "threshold", "strategy"]
optional_index_params = ["index_name", "default_top_k", "embeddings"]
optional_index_params = ["collection_name", "index_name", "default_top_k", "embeddings"]

for key in optional_search_params:
if key in data:
Expand Down