Text Generation
Safetensors
English
llama

INTELLECT-1

Model Overview

INTELLECT-1 is the first collaboratively trained 10 billion parameter language model trained from scratch on 1 trillion tokens of English text and code.

Intellect 1 training visual

This is a base model. Please use the INTELLECT-1-Instruct for chat use case.

INTELLECT-1 was trained on up to 14 concurrent nodes distributed across 3 continents, with contributions from 30 independent community contributors providing compute. The training code utilizes the prime framework, a scalable distributed training framework designed for fault-tolerant, dynamically scaling, high-perfomance training on unreliable, globally distributed workers. The key abstraction that allows dynamic scaling is the ElasticDeviceMesh which manages dynamic global process groups for fault-tolerant communication across the internet and local process groups for communication within a node. The model was trained using the DiLoCo algorithms with 100 inner steps. The global all-reduce was done with custom int8 all-reduce kernels to reduce the communication payload required, greatly reducing the communication overhead by a factor 400x.

For more detailed technical insights, please refer to our technical paper.

Note: You must add a BOS token at the beginning of each sample. Performance may be impacted otherwise.

Usage

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

torch.set_default_device("cuda")
model = AutoModelForCausalLM.from_pretrained("PrimeIntellect/INTELLECT-1")
tokenizer = AutoTokenizer.from_pretrained("PrimeIntellect/INTELLECT-1")

input_text = "What is the Metamorphosis of Prime Intellect about?"
input_ids = tokenizer.encode(input_text, return_tensors="pt")
output_ids = model.generate(input_ids, max_length=50, num_return_sequences=1)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)

print(output_text)

Example text generation pipeline

import torch
from transformers import pipeline
torch.set_default_device("cuda")

pipe = pipeline("text-generation", model="PrimeIntellect/INTELLECT-1")
print(pipe("What is prime intellect ?"))

Model Details

  • Compute Contributors: Prime Intellect, Arcee AI, kotaro, skre_0, marlo, rodeo, Herb, Olas, superchillen, Hugging Face, mev_pete, 0xfr_, dj, primeprimeint1234, Marco Giglio, realtek, Hyperbolic, hecataeus, NWO, Virtual Machine, droll, SemiAnalysis, waiting_, toptickcrypto, sto, Johannes, washout_segment_0b, klee
  • Release Date: 29 Nov 2024
  • Model License: Apache 2.0

Technical Specifications

Parameter Value
Parameter Size 10B
Number of Layers 42
Number of Attention Heads 32
Hidden Size 4096
Context Length 8192
Vocabulary Size 128256

Training Details:

  • Dataset: 55% fineweb-edu, 10% fineweb, 20% Stack V1, 10% dclm-baseline, 5% open-web-math
  • Tokens: 1 Trillion
  • Optimizer: Diloco/LocalSGD - Inner Optimizer: AdamW, Outer Optmizer: Nesterov SGD

Performance on benchmarks

Base Models:

Model Size Tokens MMLU GPQA GSM8K ARC-C Hellaswag
INTELLECT 10B 1T 37.5 26.12 8.1 52.13 72.26
MPT-7B 7B 1T 26.8 25.67 8.3 46.67 77.41
Falcon-7B 7B 1.5T 26.2 23.66 4.9 47.61 78.23
Pythia-12B 12B 300B 26.5 24.33 4.09 40.61 68.83
LLM360-Amber 7B 1.3T 24.5 27.01 4.32 42.75 74.08
LLaMA-7B 7B 1T 35.1 23.21 9.7 50.43 78.19
LLaMA-13B 13B 1T 46.9 26.34 17.3 56.14 81.05
LLaMA2-7B 7B 2T 45.3 25.89 13.5 54.10 78.64
LLaMA2-13B 13B 2T 54.8 25.67 24.3 59.81 82.58

Instruction-Tuned Models:

Model Size Tokens MMLU GPQA GSM8K ARC-C Hellaswag
INTELLECT-Instruct 10B 1T 49.89 28.32 38.58 54.52 71.42
MPT-7B-Chat 7B 1T 36.29 26.79 8.26 51.02 75.88
Falcon-7B-Instruct 7B 1.5T 25.21 26.34 4.93 45.82 70.61
LLM360-AmberChat 7B 1.4T 36.02 27.23 6.14 43.94 73.94
LLaMA2-7B-Chat 7B 2T 47.20 28.57 23.96 53.33 78.69
LLaMA2-13B-Chat 13B 2T 53.51 28.35 37.15 59.73 82.47

Citations

If you use this model in your research, please cite it as follows:

@article{jaghouar2024intellect,
  title={INTELLECT-1 Technical Report.},
  author={Jaghouar, Sami and Ong, Jack Min and Basra, Manveer and Obeid, Fares and Straube, Jannik and Keiblinger, Michael and Bakouch, Elie and Atkins, Lucas and Panahi, Maziyar and Goddard, Charles and Ryabinin, Max and Hagemann, Johannes},
  journal={arXiv preprint},
  year={2024}
}
Downloads last month
88
Safetensors
Model size
10.2B params
Tensor type
BF16
·
Inference Examples
Unable to determine this model's library. Check the docs .

Model tree for PrimeIntellect/INTELLECT-1

Finetunes
1 model
Quantizations
4 models

Datasets used to train PrimeIntellect/INTELLECT-1

Collection including PrimeIntellect/INTELLECT-1