forked from PaddlePaddle/PaddleOCR
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
252 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,244 @@ | ||
""" | ||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
""" | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
from __future__ import unicode_literals | ||
|
||
import sys | ||
import six | ||
import cv2 | ||
import numpy as np | ||
|
||
|
||
class GenTableMask(object): | ||
""" gen table mask """ | ||
|
||
def __init__(self, shrink_h_max, shrink_w_max, mask_type=0, **kwargs): | ||
self.shrink_h_max = 5 | ||
self.shrink_w_max = 5 | ||
self.mask_type = mask_type | ||
|
||
def projection(self, erosion, h, w, spilt_threshold=0): | ||
# 水平投影 | ||
projection_map = np.ones_like(erosion) | ||
project_val_array = [0 for _ in range(0, h)] | ||
|
||
for j in range(0, h): | ||
for i in range(0, w): | ||
if erosion[j, i] == 255: | ||
project_val_array[j] += 1 | ||
# 根据数组,获取切割点 | ||
start_idx = 0 # 记录进入字符区的索引 | ||
end_idx = 0 # 记录进入空白区域的索引 | ||
in_text = False # 是否遍历到了字符区内 | ||
box_list = [] | ||
for i in range(len(project_val_array)): | ||
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了 | ||
in_text = True | ||
start_idx = i | ||
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了 | ||
end_idx = i | ||
in_text = False | ||
if end_idx - start_idx <= 2: | ||
continue | ||
box_list.append((start_idx, end_idx + 1)) | ||
|
||
if in_text: | ||
box_list.append((start_idx, h - 1)) | ||
# 绘制投影直方图 | ||
for j in range(0, h): | ||
for i in range(0, project_val_array[j]): | ||
projection_map[j, i] = 0 | ||
return box_list, projection_map | ||
|
||
def projection_cx(self, box_img): | ||
box_gray_img = cv2.cvtColor(box_img, cv2.COLOR_BGR2GRAY) | ||
h, w = box_gray_img.shape | ||
# 灰度图片进行二值化处理 | ||
ret, thresh1 = cv2.threshold(box_gray_img, 200, 255, cv2.THRESH_BINARY_INV) | ||
# 纵向腐蚀 | ||
if h < w: | ||
kernel = np.ones((2, 1), np.uint8) | ||
erode = cv2.erode(thresh1, kernel, iterations=1) | ||
else: | ||
erode = thresh1 | ||
# 水平膨胀 | ||
kernel = np.ones((1, 5), np.uint8) | ||
erosion = cv2.dilate(erode, kernel, iterations=1) | ||
# 水平投影 | ||
projection_map = np.ones_like(erosion) | ||
project_val_array = [0 for _ in range(0, h)] | ||
|
||
for j in range(0, h): | ||
for i in range(0, w): | ||
if erosion[j, i] == 255: | ||
project_val_array[j] += 1 | ||
# 根据数组,获取切割点 | ||
start_idx = 0 # 记录进入字符区的索引 | ||
end_idx = 0 # 记录进入空白区域的索引 | ||
in_text = False # 是否遍历到了字符区内 | ||
box_list = [] | ||
spilt_threshold = 0 | ||
for i in range(len(project_val_array)): | ||
if in_text == False and project_val_array[i] > spilt_threshold: # 进入字符区了 | ||
in_text = True | ||
start_idx = i | ||
elif project_val_array[i] <= spilt_threshold and in_text == True: # 进入空白区了 | ||
end_idx = i | ||
in_text = False | ||
if end_idx - start_idx <= 2: | ||
continue | ||
box_list.append((start_idx, end_idx + 1)) | ||
|
||
if in_text: | ||
box_list.append((start_idx, h - 1)) | ||
# 绘制投影直方图 | ||
for j in range(0, h): | ||
for i in range(0, project_val_array[j]): | ||
projection_map[j, i] = 0 | ||
split_bbox_list = [] | ||
if len(box_list) > 1: | ||
for i, (h_start, h_end) in enumerate(box_list): | ||
if i == 0: | ||
h_start = 0 | ||
if i == len(box_list): | ||
h_end = h | ||
word_img = erosion[h_start:h_end + 1, :] | ||
word_h, word_w = word_img.shape | ||
w_split_list, w_projection_map = self.projection(word_img.T, word_w, word_h) | ||
w_start, w_end = w_split_list[0][0], w_split_list[-1][1] | ||
if h_start > 0: | ||
h_start -= 1 | ||
h_end += 1 | ||
word_img = box_img[h_start:h_end + 1:, w_start:w_end + 1, :] | ||
split_bbox_list.append([w_start, h_start, w_end, h_end]) | ||
else: | ||
split_bbox_list.append([0, 0, w, h]) | ||
return split_bbox_list | ||
|
||
def shrink_bbox(self, bbox): | ||
left, top, right, bottom = bbox | ||
sh_h = min(max(int((bottom - top) * 0.1), 1), self.shrink_h_max) | ||
sh_w = min(max(int((right - left) * 0.1), 1), self.shrink_w_max) | ||
left_new = left + sh_w | ||
right_new = right - sh_w | ||
top_new = top + sh_h | ||
bottom_new = bottom - sh_h | ||
if left_new >= right_new: | ||
left_new = left | ||
right_new = right | ||
if top_new >= bottom_new: | ||
top_new = top | ||
bottom_new = bottom | ||
return [left_new, top_new, right_new, bottom_new] | ||
|
||
def __call__(self, data): | ||
img = data['image'] | ||
cells = data['cells'] | ||
height, width = img.shape[0:2] | ||
if self.mask_type == 1: | ||
mask_img = np.zeros((height, width), dtype=np.float32) | ||
else: | ||
mask_img = np.zeros((height, width, 3), dtype=np.float32) | ||
cell_num = len(cells) | ||
for cno in range(cell_num): | ||
if "bbox" in cells[cno]: | ||
bbox = cells[cno]['bbox'] | ||
left, top, right, bottom = bbox | ||
box_img = img[top:bottom, left:right, :].copy() | ||
split_bbox_list = self.projection_cx(box_img) | ||
for sno in range(len(split_bbox_list)): | ||
split_bbox_list[sno][0] += left | ||
split_bbox_list[sno][1] += top | ||
split_bbox_list[sno][2] += left | ||
split_bbox_list[sno][3] += top | ||
|
||
for sno in range(len(split_bbox_list)): | ||
left, top, right, bottom = split_bbox_list[sno] | ||
left, top, right, bottom = self.shrink_bbox([left, top, right, bottom]) | ||
if self.mask_type == 1: | ||
mask_img[top:bottom, left:right] = 1.0 | ||
data['mask_img'] = mask_img | ||
else: | ||
mask_img[top:bottom, left:right, :] = (255, 255, 255) | ||
data['image'] = mask_img | ||
return data | ||
|
||
class ResizeTableImage(object): | ||
def __init__(self, max_len, **kwargs): | ||
super(ResizeTableImage, self).__init__() | ||
self.max_len = max_len | ||
|
||
def get_img_bbox(self, cells): | ||
bbox_list = [] | ||
if len(cells) == 0: | ||
return bbox_list | ||
cell_num = len(cells) | ||
for cno in range(cell_num): | ||
if "bbox" in cells[cno]: | ||
bbox = cells[cno]['bbox'] | ||
bbox_list.append(bbox) | ||
return bbox_list | ||
|
||
def resize_img_table(self, img, bbox_list, max_len): | ||
height, width = img.shape[0:2] | ||
ratio = max_len / (max(height, width) * 1.0) | ||
resize_h = int(height * ratio) | ||
resize_w = int(width * ratio) | ||
img_new = cv2.resize(img, (resize_w, resize_h)) | ||
bbox_list_new = [] | ||
for bno in range(len(bbox_list)): | ||
left, top, right, bottom = bbox_list[bno].copy() | ||
left = int(left * ratio) | ||
top = int(top * ratio) | ||
right = int(right * ratio) | ||
bottom = int(bottom * ratio) | ||
bbox_list_new.append([left, top, right, bottom]) | ||
return img_new, bbox_list_new | ||
|
||
def __call__(self, data): | ||
img = data['image'] | ||
if 'cells' not in data: | ||
cells = [] | ||
else: | ||
cells = data['cells'] | ||
bbox_list = self.get_img_bbox(cells) | ||
img_new, bbox_list_new = self.resize_img_table(img, bbox_list, self.max_len) | ||
data['image'] = img_new | ||
cell_num = len(cells) | ||
bno = 0 | ||
for cno in range(cell_num): | ||
if "bbox" in data['cells'][cno]: | ||
data['cells'][cno]['bbox'] = bbox_list_new[bno] | ||
bno += 1 | ||
data['max_len'] = self.max_len | ||
return data | ||
|
||
class PaddingTableImage(object): | ||
def __init__(self, **kwargs): | ||
super(PaddingTableImage, self).__init__() | ||
|
||
def __call__(self, data): | ||
img = data['image'] | ||
max_len = data['max_len'] | ||
padding_img = np.zeros((max_len, max_len, 3), dtype=np.float32) | ||
height, width = img.shape[0:2] | ||
padding_img[0:height, 0:width, :] = img.copy() | ||
data['image'] = padding_img | ||
return data | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters