Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
180 changes: 158 additions & 22 deletions src/include/migraphx/op/resize.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -136,6 +136,110 @@ struct resize

std::string name() const { return "resize"; }

private:
// Helper struct to hold interpolation parameters for one dimension
struct interp_params
{
std::size_t i0; // lower index
std::size_t i1; // upper index
double weight; // interpolation weight (0.0 to 1.0)
};

// Compute interpolation parameters for a single dimension
template <class IdxOp>
static interp_params compute_interp_params_1d(std::size_t in_len,
std::size_t out_len,
std::size_t out_idx,
float scale,
const IdxOp& idx_op)
{
// Compute the original floating-point coordinate
double coord = idx_op(in_len, out_len, out_idx, scale);

// Clamp to valid input range [0, in_len-1]
double max_c = in_len > 0 ? static_cast<double>(in_len - 1) : 0.0;
coord = std::max(0.0, std::min(max_c, coord));

std::size_t base = std::floor(coord);
std::size_t next = std::min(base + 1, (in_len == 0 ? 0 : in_len - 1));
double frac = coord - static_cast<double>(base);

// Handle degenerate dimension (length 1) to avoid NaNs
if(in_len <= 1)
{
base = 0;
next = 0;
frac = 0.0;
}

return {base, next, frac};
}

// Compute input indices for nearest neighbor mode
template <class NearestOp, class IdxOp>
static std::vector<std::size_t>
compute_nearest_indices(const std::vector<std::size_t>& in_lens,
const std::vector<std::size_t>& out_lens,
const std::vector<std::size_t>& out_idx_v,
const std::vector<float>& vec_scale,
const NearestOp& nearest_op,
const IdxOp& idx_op)
{
std::vector<std::size_t> in_idx(out_idx_v.size());
for(std::size_t i = 0; i < out_idx_v.size(); ++i)
{
auto idx_val = idx_op(in_lens[i], out_lens[i], out_idx_v[i], vec_scale[i]);
in_idx[i] = nearest_op(in_lens[i], idx_val);
}
return in_idx;
}

// Perform N-D multilinear interpolation for a single output point
template <class Data, class IdxOp>
static double compute_linear_interp_point(const Data& data,
const std::vector<std::size_t>& in_lens,
const std::vector<std::size_t>& out_lens,
const std::vector<std::size_t>& out_idx_v,
const std::vector<float>& vec_scale,
const IdxOp& idx_op)
{
const std::size_t ndim = out_idx_v.size();

// Precompute interpolation parameters for each dimension
std::vector<interp_params> params(ndim);
for(std::size_t d = 0; d < ndim; d++)
{
params[d] = compute_interp_params_1d(
in_lens[d], out_lens[d], out_idx_v[d], vec_scale[d], idx_op);
}

// Accumulate over 2^ndim corners
double acc = 0.0;
const std::size_t corners = (ndim == 0) ? 1 : (1ULL << ndim);
std::vector<std::size_t> in_idx(ndim);

for(std::size_t mask = 0; mask < corners; ++mask)
{
double w = 1.0;
for(std::size_t d = 0; d < ndim; ++d)
{
const bool use_high = ((mask >> d) & 1U) != 0U;
w *= use_high ? params[d].weight : (1.0 - params[d].weight);
in_idx[d] = use_high ? params[d].i1 : params[d].i0;
}

if(w == 0.0)
continue;

using in_value_t = typename Data::value_type;
in_value_t v = data(in_idx.begin(), in_idx.end());
acc += w * static_cast<double>(v);
}

return acc;
}

public:
template <class Self, class F>
static auto reflect(Self& self, F f)
{
Expand All @@ -150,8 +254,9 @@ struct resize
{
check_shapes{inputs, *this, true}.has(1, 2);

if(mode != "nearest")
MIGRAPHX_THROW("RESIZE: Only Nearest mode is supported");
// Allow nearest and linear; still reject others
if(mode != "nearest" and mode != "linear")
MIGRAPHX_THROW("RESIZE: Only 'nearest' and 'linear' modes are supported");

// Inputs are X, sizes or scale, ROI and axes not supported.
if(inputs.size() == 1)
Expand Down Expand Up @@ -203,9 +308,22 @@ struct resize
// compute() method. For any other target, there must be a compiler pass that replaces
// this operation with a fixed-size output at runtime.
std::size_t max_val = std::numeric_limits<std::size_t>::max();
std::vector<shape::dynamic_dimension> dyn_dims(inputs.back().lens().at(0),
shape::dynamic_dimension{0, max_val});
return {inputs.front().type(), dyn_dims};
auto input = inputs.front().to_dynamic();
std::vector<shape::dynamic_dimension> dyn_dims(input.ndim(), {0, max_val});
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This (line) is pre-existing. But conceptually, why set dyn_dims to {0, max_val}. Surely, size 0 is too small for a resize operator. Thanks.

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This was to signify that no tensor information is known at compile time. We may update this to be {1, max_val} because a dimension can never be < 1, but we need to do this in other places in the codebase for consistency.


if(not scales.empty())
{
for(std::size_t i = 0; i < scales.size(); i++)
{
dyn_dims[i].min = static_cast<std::size_t>(input.dyn_dims()[i].min * scales[i]);
if(input.dyn_dims()[i].max != max_val)
{
dyn_dims[i].max =
static_cast<std::size_t>(input.dyn_dims()[i].max * scales[i]);
}
}
}
return {input.type(), dyn_dims};
}
}

Expand All @@ -230,7 +348,7 @@ struct resize
in_lens.begin(),
vec_scale.begin(),
[](size_t out_len, size_t in_len) {
return (in_len == 0 ? 1.f
return (in_len == 0 ? 1.0f
: static_cast<float>(out_len) / in_len);
});
}
Expand Down Expand Up @@ -268,7 +386,6 @@ struct resize
else
{
// read the scale from args[1]
//
std::copy(input.begin(), input.end(), vec_scale.begin());
// compute the output dimensions from the given scales. This computation
// always rounds down, unlike the internal computation in Nearest mode
Expand All @@ -286,22 +403,41 @@ struct resize

shape output_shape = {args[0].get_shape().type(), out_lens};
argument result{output_shape};
auto nearest_op = get_nearest_op(nearest_mode);
auto idx_op = get_original_idx_op(coordinate_transformation_mode);

// Populate each element in output by selecting "nearest" item in input.
visit_all(result, args[0])([&](auto output, auto data) {
migraphx::shape out_comp_shape{data.get_shape().type(), out_lens};
shape_for_each(out_comp_shape, [&](const auto& out_idx_v, size_t out_idx) {
std::vector<size_t> in_idx(out_idx_v.size());
for(auto ii = 0; ii < out_idx_v.size(); ++ii)
{
auto idx_val = idx_op(in_lens[ii], out_lens[ii], out_idx_v[ii], vec_scale[ii]);
in_idx[ii] = nearest_op(in_lens[ii], idx_val);
}
output[out_idx] = data(in_idx.begin(), in_idx.end());

auto idx_op = get_original_idx_op(coordinate_transformation_mode);

if(mode == "nearest")
{
auto nearest_op = get_nearest_op(nearest_mode);
// Populate each element in output by selecting "nearest" item in input.
visit_all(result, args[0])([&](auto output, auto data) {
migraphx::shape out_comp_shape{data.get_shape().type(), out_lens};
shape_for_each(out_comp_shape, [&](const auto& out_idx_v, size_t out_idx) {
auto in_idx = compute_nearest_indices(
in_lens, out_lens, out_idx_v, vec_scale, nearest_op, idx_op);
output[out_idx] = data(in_idx.begin(), in_idx.end());
});
});
}
else if(mode == "linear")
{
// N-D multilinear interpolation
visit_all(result, args[0])([&](auto output, auto data) {
migraphx::shape out_comp_shape{data.get_shape().type(), out_lens};
shape_for_each(out_comp_shape, [&](const auto& out_idx_v, std::size_t out_idx) {
double acc = compute_linear_interp_point(
data, in_lens, out_lens, out_idx_v, vec_scale, idx_op);

using out_value_t = typename decltype(output)::value_type;
output[out_idx] = static_cast<out_value_t>(acc);
});
});
});
}
else
{
MIGRAPHX_THROW("RESIZE: Unsupported mode in compute()");
}

return result;
}
};
Expand Down
14 changes: 14 additions & 0 deletions src/onnx/parse_resize.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -470,6 +470,20 @@ struct parse_resize : op_parser<parse_resize>
auto out_lens = resize.out_lens;
auto vec_scale = resize.vec_scale;

if(args_0->get_shape().dynamic())
{
// Resize's compute_shape() will read scales_sizes_arg as "scales" or "sizes"
// depending on its data type

return info.add_instruction(
make_op("resize",
{{"mode", "linear"},
{"scales", vec_scale},
{"coordinate_transformation_mode", resize.get_coord_trans_mode()}}),
args_0,
resize.get_scales_sizes_arg());
}
Comment on lines +473 to +485
Copy link

Copilot AI Oct 14, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This path hardcodes mode to 'linear' and also sets the 'scales' attribute while simultaneously providing a second input (sizes/scales). That can: (1) override the original ONNX mode (e.g., 'nearest') for dynamic inputs, and (2) create inconsistent behavior by specifying scales both as an attribute and as an input. Fix by propagating the parsed mode and avoiding the 'scales' attribute when a scales/sizes input is provided. For example: make_op('resize', {{'mode', resize.get_mode()}, {'coordinate_transformation_mode', resize.get_coord_trans_mode()}}) with args_0 and resize.get_scales_sizes_arg().

Copilot uses AI. Check for mistakes.

// out_lens and other variables can't be populated if non-constant (runtime) size
// inputs.
if(not resize.is_constant_scale_input())
Expand Down
51 changes: 51 additions & 0 deletions test/onnx/verify/resize_downsample_linear_dyn_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2025 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#include <migraphx/register_target.hpp>
#include <migraphx/verify.hpp>
#include <onnx_test.hpp>

TEST_CASE(resize_downsample_linear_dyn_test)
{
using migraphx::half;
migraphx::onnx_options options;
options.map_dyn_input_dims = {{"X", {{1, 1}, {1, 1}, {2, 3}, {4, 8}}}};
migraphx::program p = read_onnx("resize_downsample_linear_half_test.onnx", options);
p.compile(migraphx::make_target("ref"));

migraphx::shape sx{migraphx::shape::half_type, {1, 1, 2, 4}};
std::vector<half> dx = {half{1}, half{2}, half{3}, half{4}, half{5}, half{6}, half{7}, half{8}};

migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sx, dx.data());

auto result = p.eval(pp).back();
std::vector<half> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });

// Expected output was calculated without any quantization
std::vector<half> gold = {half{2.8333333}, half{4.833333}};

EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
51 changes: 51 additions & 0 deletions test/onnx/verify/resize_upsample_linear_dyn_test.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2015-2025 Advanced Micro Devices, Inc. All rights reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/

#include <migraphx/register_target.hpp>
#include <migraphx/verify.hpp>
#include <onnx_test.hpp>

TEST_CASE(resize_upsample_linear_dyn_test)
{
migraphx::onnx_options options;
options.map_dyn_input_dims = {{"X", {{1, 1}, {1, 1}, {2, 3}, {2, 3}}}};

migraphx::program p = read_onnx("resize_upsample_linear_test.onnx", options);
p.compile(migraphx::make_target("ref"));

migraphx::shape sx{migraphx::shape::float_type, {1, 1, 2, 2}};
std::vector<float> dx = {1.0f, 2.0f, 3.0f, 4.0f};

migraphx::parameter_map pp;
pp["X"] = migraphx::argument(sx, dx.data());

auto result = p.eval(pp).back();
std::vector<float> result_vector;
result.visit([&](auto output) { result_vector.assign(output.begin(), output.end()); });

std::vector<float> gold = {
1, 1.25, 1.75, 2, 1.5, 1.75, 2.25, 2.5, 2.5, 2.75, 3.25, 3.5, 3, 3.25, 3.75, 4};

EXPECT(migraphx::verify::verify_rms_range(result_vector, gold));
}
Loading
Loading