lmv2-g-passport-197-doc-09-13
This model is a fine-tuned version of microsoft/layoutlmv2-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0438
- Country Code Precision: 0.9412
- Country Code Recall: 0.9697
- Country Code F1: 0.9552
- Country Code Number: 33
- Date Of Birth Precision: 0.9714
- Date Of Birth Recall: 1.0
- Date Of Birth F1: 0.9855
- Date Of Birth Number: 34
- Date Of Expiry Precision: 1.0
- Date Of Expiry Recall: 1.0
- Date Of Expiry F1: 1.0
- Date Of Expiry Number: 36
- Date Of Issue Precision: 1.0
- Date Of Issue Recall: 1.0
- Date Of Issue F1: 1.0
- Date Of Issue Number: 36
- Given Name Precision: 0.9444
- Given Name Recall: 1.0
- Given Name F1: 0.9714
- Given Name Number: 34
- Nationality Precision: 0.9714
- Nationality Recall: 1.0
- Nationality F1: 0.9855
- Nationality Number: 34
- Passport No Precision: 0.9118
- Passport No Recall: 0.9688
- Passport No F1: 0.9394
- Passport No Number: 32
- Place Of Birth Precision: 1.0
- Place Of Birth Recall: 0.9730
- Place Of Birth F1: 0.9863
- Place Of Birth Number: 37
- Place Of Issue Precision: 1.0
- Place Of Issue Recall: 0.9722
- Place Of Issue F1: 0.9859
- Place Of Issue Number: 36
- Sex Precision: 0.9655
- Sex Recall: 0.9333
- Sex F1: 0.9492
- Sex Number: 30
- Surname Precision: 0.9259
- Surname Recall: 1.0
- Surname F1: 0.9615
- Surname Number: 25
- Type Precision: 1.0
- Type Recall: 1.0
- Type F1: 1.0
- Type Number: 27
- Overall Precision: 0.97
- Overall Recall: 0.9848
- Overall F1: 0.9773
- Overall Accuracy: 0.9941
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 4e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- num_epochs: 30
Training results
Training Loss | Epoch | Step | Validation Loss | Country Code Precision | Country Code Recall | Country Code F1 | Country Code Number | Date Of Birth Precision | Date Of Birth Recall | Date Of Birth F1 | Date Of Birth Number | Date Of Expiry Precision | Date Of Expiry Recall | Date Of Expiry F1 | Date Of Expiry Number | Date Of Issue Precision | Date Of Issue Recall | Date Of Issue F1 | Date Of Issue Number | Given Name Precision | Given Name Recall | Given Name F1 | Given Name Number | Nationality Precision | Nationality Recall | Nationality F1 | Nationality Number | Passport No Precision | Passport No Recall | Passport No F1 | Passport No Number | Place Of Birth Precision | Place Of Birth Recall | Place Of Birth F1 | Place Of Birth Number | Place Of Issue Precision | Place Of Issue Recall | Place Of Issue F1 | Place Of Issue Number | Sex Precision | Sex Recall | Sex F1 | Sex Number | Surname Precision | Surname Recall | Surname F1 | Surname Number | Type Precision | Type Recall | Type F1 | Type Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.6757 | 1.0 | 157 | 1.2569 | 0.0 | 0.0 | 0.0 | 33 | 0.0 | 0.0 | 0.0 | 34 | 0.2466 | 1.0 | 0.3956 | 36 | 0.0 | 0.0 | 0.0 | 36 | 0.0 | 0.0 | 0.0 | 34 | 0.0 | 0.0 | 0.0 | 34 | 0.0 | 0.0 | 0.0 | 32 | 0.0 | 0.0 | 0.0 | 37 | 0.0 | 0.0 | 0.0 | 36 | 0.0 | 0.0 | 0.0 | 30 | 0.0 | 0.0 | 0.0 | 25 | 0.0 | 0.0 | 0.0 | 27 | 0.2466 | 0.0914 | 0.1333 | 0.8446 |
0.9214 | 2.0 | 314 | 0.5683 | 0.9394 | 0.9394 | 0.9394 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.5625 | 0.5294 | 0.5455 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.6098 | 0.7812 | 0.6849 | 32 | 0.9394 | 0.8378 | 0.8857 | 37 | 0.8293 | 0.9444 | 0.8831 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.6129 | 0.76 | 0.6786 | 25 | 1.0 | 0.8889 | 0.9412 | 27 | 0.8642 | 0.8883 | 0.8761 | 0.9777 |
0.4452 | 3.0 | 471 | 0.3266 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.5556 | 0.4412 | 0.4918 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.625 | 0.7812 | 0.6944 | 32 | 1.0 | 0.8108 | 0.8955 | 37 | 0.7556 | 0.9444 | 0.8395 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.5556 | 0.8 | 0.6557 | 25 | 1.0 | 0.7037 | 0.8261 | 27 | 0.8532 | 0.8706 | 0.8618 | 0.9784 |
0.2823 | 4.0 | 628 | 0.2215 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.75 | 0.8824 | 0.8108 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.8378 | 0.9118 | 37 | 0.9459 | 0.9722 | 0.9589 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.75 | 0.96 | 0.8421 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9286 | 0.9569 | 0.9425 | 0.9885 |
0.2092 | 5.0 | 785 | 0.1633 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.8889 | 0.9412 | 0.9143 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.8857 | 0.9688 | 0.9254 | 32 | 1.0 | 0.8649 | 0.9275 | 37 | 0.8974 | 0.9722 | 0.9333 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.8889 | 0.96 | 0.9231 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9525 | 0.9670 | 0.9597 | 0.9918 |
0.1593 | 6.0 | 942 | 0.1331 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 0.9730 | 1.0 | 0.9863 | 36 | 0.8857 | 0.9118 | 0.8986 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9722 | 0.9459 | 0.9589 | 37 | 0.9722 | 0.9722 | 0.9722 | 36 | 1.0 | 0.9 | 0.9474 | 30 | 0.8571 | 0.96 | 0.9057 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9549 | 0.9670 | 0.9609 | 0.9908 |
0.1288 | 7.0 | 1099 | 0.1064 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.92 | 0.92 | 0.92 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9723 | 0.9797 | 0.9760 | 0.9941 |
0.1035 | 8.0 | 1256 | 0.1043 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9231 | 0.9730 | 0.9474 | 37 | 0.75 | 1.0 | 0.8571 | 36 | 0.9032 | 0.9333 | 0.9180 | 30 | 0.6486 | 0.96 | 0.7742 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9085 | 0.9822 | 0.9439 | 0.9856 |
0.0843 | 9.0 | 1413 | 0.0823 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9143 | 0.9412 | 0.9275 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9394 | 0.9688 | 0.9538 | 32 | 0.9032 | 0.7568 | 0.8235 | 37 | 0.9211 | 0.9722 | 0.9459 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.7059 | 0.96 | 0.8136 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9355 | 0.9569 | 0.9460 | 0.9905 |
0.0733 | 10.0 | 1570 | 0.0738 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 1.0 | 0.9444 | 0.9714 | 36 | 0.8485 | 0.9333 | 0.8889 | 30 | 0.8333 | 1.0 | 0.9091 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9484 | 0.9797 | 0.9638 | 0.9911 |
0.0614 | 11.0 | 1727 | 0.0661 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9673 | 0.9772 | 0.9722 | 0.9934 |
0.0548 | 12.0 | 1884 | 0.0637 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 0.9730 | 1.0 | 0.9863 | 36 | 0.9167 | 0.9706 | 0.9429 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9507 | 0.9797 | 0.965 | 0.9921 |
0.0515 | 13.0 | 2041 | 0.0562 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8621 | 1.0 | 0.9259 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9605 | 0.9873 | 0.9737 | 0.9931 |
0.0431 | 14.0 | 2198 | 0.0513 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 0.9630 | 0.9811 | 27 | 0.9724 | 0.9822 | 0.9773 | 0.9944 |
0.0413 | 15.0 | 2355 | 0.0582 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 0.9730 | 1.0 | 0.9863 | 36 | 0.9429 | 0.9706 | 0.9565 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.8929 | 1.0 | 0.9434 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9627 | 0.9822 | 0.9724 | 0.9934 |
0.035 | 16.0 | 2512 | 0.0556 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 0.9722 | 0.9859 | 36 | 0.8857 | 0.9118 | 0.8986 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8621 | 1.0 | 0.9259 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9552 | 0.9746 | 0.9648 | 0.9915 |
0.0316 | 17.0 | 2669 | 0.0517 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9167 | 0.9706 | 0.9429 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.8929 | 1.0 | 0.9434 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9579 | 0.9822 | 0.9699 | 0.9928 |
0.027 | 18.0 | 2826 | 0.0502 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9032 | 0.9333 | 0.9180 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9628 | 0.9848 | 0.9737 | 0.9931 |
0.026 | 19.0 | 2983 | 0.0481 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9189 | 1.0 | 0.9577 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8333 | 1.0 | 0.9091 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9581 | 0.9873 | 0.9725 | 0.9928 |
0.026 | 20.0 | 3140 | 0.0652 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.8611 | 0.9688 | 0.9118 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 0.9730 | 1.0 | 0.9863 | 36 | 0.8235 | 0.9333 | 0.8750 | 30 | 0.8333 | 1.0 | 0.9091 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9419 | 0.9873 | 0.9641 | 0.9882 |
0.0311 | 21.0 | 3297 | 0.0438 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9444 | 1.0 | 0.9714 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.97 | 0.9848 | 0.9773 | 0.9941 |
0.0216 | 22.0 | 3454 | 0.0454 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9699 | 0.9822 | 0.9760 | 0.9941 |
0.0196 | 23.0 | 3611 | 0.0510 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.8718 | 0.9189 | 0.8947 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9655 | 0.9333 | 0.9492 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9602 | 0.9797 | 0.9698 | 0.9934 |
0.0176 | 24.0 | 3768 | 0.0457 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9706 | 0.9706 | 0.9706 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.8929 | 1.0 | 0.9434 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9676 | 0.9848 | 0.9761 | 0.9938 |
0.0141 | 25.0 | 3925 | 0.0516 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9722 | 0.9459 | 0.9589 | 37 | 0.9730 | 1.0 | 0.9863 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 0.9643 | 1.0 | 0.9818 | 27 | 0.9579 | 0.9822 | 0.9699 | 0.9928 |
0.0129 | 26.0 | 4082 | 0.0508 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9730 | 1.0 | 0.9863 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 1.0 | 1.0 | 36 | 0.875 | 0.9333 | 0.9032 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9629 | 0.9873 | 0.9749 | 0.9934 |
0.0125 | 27.0 | 4239 | 0.0455 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9259 | 1.0 | 0.9615 | 25 | 0.8710 | 1.0 | 0.9310 | 27 | 0.9652 | 0.9848 | 0.9749 | 0.9934 |
0.0131 | 28.0 | 4396 | 0.0452 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 0.9722 | 0.9859 | 36 | 0.9429 | 0.9706 | 0.9565 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 1.0 | 0.9730 | 0.9863 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9722 | 0.9772 | 0.9747 | 0.9941 |
0.0112 | 29.0 | 4553 | 0.0465 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9459 | 0.9459 | 0.9459 | 37 | 0.9722 | 0.9722 | 0.9722 | 36 | 0.9333 | 0.9333 | 0.9333 | 30 | 0.9583 | 0.92 | 0.9388 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9649 | 0.9772 | 0.9710 | 0.9931 |
0.0152 | 30.0 | 4710 | 0.0510 | 0.9412 | 0.9697 | 0.9552 | 33 | 0.9714 | 1.0 | 0.9855 | 34 | 1.0 | 1.0 | 1.0 | 36 | 1.0 | 1.0 | 1.0 | 36 | 0.8857 | 0.9118 | 0.8986 | 34 | 0.9714 | 1.0 | 0.9855 | 34 | 0.9118 | 0.9688 | 0.9394 | 32 | 0.9730 | 0.9730 | 0.9730 | 37 | 1.0 | 0.9722 | 0.9859 | 36 | 1.0 | 0.9333 | 0.9655 | 30 | 0.9231 | 0.96 | 0.9412 | 25 | 1.0 | 1.0 | 1.0 | 27 | 0.9648 | 0.9746 | 0.9697 | 0.9931 |
Framework versions
- Transformers 4.22.0.dev0
- Pytorch 1.12.1+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
- Downloads last month
- 115
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.