Skip to content

Code for ACL 2022 paper "HIBRIDS: Attention with Hierarchical Biases for Structure-aware Long Document Summarization".

License

Notifications You must be signed in to change notification settings

ShuyangCao/hibrids_summ

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

HIBRIDS

Code for ACL 2022 paper "HIBRIDS: Attention with Hierarchical Biases for Structure-aware Long Document Summarization".


News


Data


Model

Requirements

# Suggested: create a virtual environment
conda create -n hibrids python=3.8
conda activate hibrids

# Fairseq (commit f34abc)
# Newer versions might also work
mkdir lib
cd lib
git clone https://github.com/pytorch/fairseq.git
cd fairseq
git checkout f34abc
pip install -e .
cd ../..

# Other requirements
# Install after Fairseq because fairseq overrides torch version
pip install -r requirements.txt

# ==== The following requirements are only needed for model training ====

# Fairseq C extensions
cd lib/fairseq
python setup.py build_ext --inplace
cd ../..

# Apex for fp16 training
cd lib
git clone --recurse-submodules https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./
cd ../..

Download Checkpoints & Set Environment Variables

For trained checkpoints, you can download from here.

Please organize data and trained models as follows:

EXPDIR
|- data
    |- gov-report-qs
    |- wikibiosum
    |- gov-report
|- trained_models
    |- qs_hierarchy_fq
        |- <model_name>
            |- checkpoint_best.pt
    |- qs_hierarchy_qg
    |- wiki_bio_sum
    |- gov_report

Set environment variables.

export EXPDIR=<path_to_experiment_directory>
export CODEDIR=<path_to_this_repo>

Decode with Trained Models

By default, the decoded outputs are saved in $EXPDIR/decode_outputs/<dataset>/<model>/generated_predictions.txt. You can change it by setting the --output_dir argument.

Hierarchical Bias on Encoder

cd models/hierarchical_bias

# QS Hierarchy given the First Question
python decode_qs_hierarchy_fq.py --model_dir $EXPDIR/trained_models/qs_hierarchy_fq/hierarchical_bias

# Child Question Generation
python decode_qs_hierarchy_qg.py --model_dir $EXPDIR/trained_models/qs_hierarchy_qg/hierarchical_bias

# WikiBioSum
python decode_wiki.py --model_dir $EXPDIR/trained_models/wiki_bio_sum/hierarchical_bias

# Gov Report
python decode_gov_report.py --model_dir $EXPDIR/trained_models/gov_report/hierarchical_bias

Hierarchical Bias on Decoder

cd models/hierarchical_bias_decoder

# QS Hierarchy given the First Question
python decode_qs_hierarchy_fq.py --model_dir $EXPDIR/trained_models/qs_hierarchy_fq/hierarchical_bias_decoder

# Child Question Generation
python decode_qs_hierarchy_qg.py --model_dir $EXPDIR/trained_models/qs_hierarchy_qg/hierarchical_bias_decoder

# WikiBioSum
python decode_wiki.py --model_dir $EXPDIR/trained_models/wiki_bio_sum/hierarchical_bias_decoder

# Gov Report
python decode_gov_report.py --model_dir $EXPDIR/trained_models/gov_report/hierarchical_bias_decoder

Pretty Print Hierarchy

python pretty_print.py --source_jsonl $EXPDIR/data/gov-report-qs/test.jsonl \
  --linearized_hierarchy $EXPDIR/decode_outputs/qs_hierarchy_fq/hierarchical_bias/generated_predictions.txt \
  --output_file $EXPDIR/decode_outputs/qs_hierarchy_fq/hierarchical_bias/formatted_hierarchy.txt

Train Models

Hierarchical Bias on Encoder

cd models/configs/hierarchical_bias

# QS Hierarchy given the First Question
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name qs_hierarchy_fq.yaml

# Child Question Generation
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name qs_hierarchy_qg.yaml

# WikiBioSum
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name wiki_bio_sum.yaml

# Gov Report
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name gov_report.yaml

Hierarchical Bias on Decoder

cd models/configs/hierarchical_bias_decoder

# QS Hierarchy given the First Question
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name qs_hierarchy_fq.yaml

# Child Question Generation
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name qs_hierarchy_qg.yaml

# WikiBioSum
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name wiki_bio_sum.yaml

# Gov Report
CUDA_VISIBLE_DEVICES=0,1,2,3 fairseq-hydra-train --config-dir . --config-name gov_report.yaml

Evaluation

cd evaluation

# QS Hierarchy given the First Question
python eval_qs_hierarchy_fq.py \
  --prediction $EXPDIR/decode_outputs/qs_hierarchy_fq/hierarchical_bias/generated_predictions.txt \
  --target $EXPDIR/decode_outputs/qs_hierarchy_fq/hierarchical_bias/targets.txt
 
# Child Question Generation
python eval_qg.py \
  --prediction $EXPDIR/decode_outputs/qs_hierarchy_qg/hierarchical_bias/generated_predictions.txt \
  --target $EXPDIR/decode_outputs/qs_hierarchy_qg/hierarchical_bias/targets.txt

# WikiBioSum
python eval_summary.py \
  --prediction $EXPDIR/decode_outputs/wiki_bio_sum/hierarchical_bias/generated_predictions.txt \
  --target $EXPDIR/decode_outputs/wiki_bio_sum/hierarchical_bias/targets.txt

# Gov Report
python eval_summary.py \
  --prediction $EXPDIR/decode_outputs/gov_report/hierarchical_bias/generated_predictions.txt \
  --target $EXPDIR/decode_outputs/gov_report/hierarchical_bias/targets.txt

About

Code for ACL 2022 paper "HIBRIDS: Attention with Hierarchical Biases for Structure-aware Long Document Summarization".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages