Skip to content

Code for NAACL 2021 paper "Inference Time Style Control for Summarization".

Notifications You must be signed in to change notification settings

ShuyangCao/inference_style_control

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Inference Time Style Control for Summarization

Code for NAACL 2021 paper "Inference Time Style Control for Summarization".

Run our code

The PyTorch version used by our code is 1.4.0.

Please also install our modified Fairseq library:

cd fairseq
pip install -e .

Our models and binarized data can be downloaded here.

For word unit prediction, please also download the RoBERTa-base model from here.

To convert the outputs generated by scripts below to text, please run convert_output.py --generate-dir $OUTPUT_DIR.

Simplicity-controlled summarization on CNN/DailyMail

Discriminative scorer
./script/simplicity/test_decoder_state_adjustment_scorer.sh \
  $DOWNLOAD_PATH/data/binarized_cnndm \
  $DOWNLOAD_PATH/models/summarizers/cnndm_summarizer/model.pt \
  $DOWNLOAD_PATH/models/simplicity_models/discriminator \
  $OUTPUT_DIR
Class-conditional language model scorer
./script/simplicity/test_decoder_state_adjustment_cclm.sh \
  $DOWNLOAD_PATH/data/binarized_cnndm \
  $DOWNLOAD_PATH/models/summarizers/cnndm_summarizer/model.pt \
  $DOWNLOAD_PATH/models/simplicity_models/cclm \
  $OUTPUT_DIR
Word unit prediction
./script/simplicity/test_word_unit_prediction.sh \
  $DOWNLOAD_PATH/data/binarized_cnndm \
  $DOWNLOAD_PATH/models/summarizers/cnndm_summarizer/model.pt \
  $DOWNLOAD_PATH/models/simplicity_models/wu_predictor \
  $ROBERTA_DIR \
  $OUTPUT_DIR
Dynamic word unit prediction
./script/simplicity/test_dynamic_word_unit_prediction.sh \
  $DOWNLOAD_PATH/data/binarized_cnndm \
  $DOWNLOAD_PATH/models/summarizers/cnndm_summarizer/model.pt \
  $DOWNLOAD_PATH/models/simplicity_models/dynamic_wu_predictor \
  $ROBERTA_DIR \
  $OUTPUT_DIR

Ideology-controlled headline generation on SemEval

Discriminative scorer
./script/ideology/test_decoder_state_adjustment_scorer.sh \
  $DOWNLOAD_PATH/data/binarized_semeval \
  $DOWNLOAD_PATH/models/summarizers/semeval_summarizer/model.pt \
  $DOWNLOAD_PATH/models/ideology_models/discriminator/<left/right> \
  $OUTPUT_DIR
Class-conditional language model scorer

To generate left-leaning headlines, set TARGET_CLASS=177; to generate right-leaning headlines, set TARGET_CLASS=179.

./script/ideology/test_decoder_state_adjustment_cclm.sh \
  $DOWNLOAD_PATH/data/binarized_semeval \
  $DOWNLOAD_PATH/models/summarizers/semeval_summarizer/model.pt \
  $DOWNLOAD_PATH/models/ideology_models/cclm \
  $TARGET_CLASS \
  $OUTPUT_DIR
Word unit prediction
./script/ideology/test_word_unit_prediction.sh \
  $DOWNLOAD_PATH/data/binarized_semeval \
  $DOWNLOAD_PATH/models/summarizers/semeval_summarizer/model.pt \
  $DOWNLOAD_PATH/models/ideology_models/wu_predictor \
  $ROBERTA_DIR \
  $OUTPUT_DIR
Dynamic word unit prediction
./script/ideology/test_dynamic_word_unit_prediction.sh \
  $DOWNLOAD_PATH/data/binarized_semeval \
  $DOWNLOAD_PATH/models/summarizers/semeval_summarizer/model.pt \
  $DOWNLOAD_PATH/models/ideology_models/dynamic_wu_predictor \
  $ROBERTA_DIR \
  $OUTPUT_DIR

Train and run your/our models

To train your own summarizer, please follow the instruction provided by BART.

Discriminative scorer

Please follow the instruction provided by RoBERTa to train your discriminative scorer.

After training, organize the directory for storing the model as:

model.pt
input0/dict.txt
label/dict.txt
Class-conditional language model scorer

Please follow the instruction provided by Fairseq to train your class-conditional language model.

To construct the data for training the class-conditional language model, you need to prepend the style label to each training sample after applying BPE preprocessing. cclm_data/build_cclm_data_example.py provides an example for this process.

After training, organize the directory for storing the model as:

model.pt
dict.txt
(Dynamic) word unit predictor

To train (dynamic) word unit predictors, you need to prepare <data_split>.source and <data_split>.target. Each line in the source file is the input for a sample and each line in the target file contains the ground-truth predicted words.

Similar to the BPE preprocessing for BART, preprocess the data for word unit prediction with:

wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/encoder.json'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/vocab.bpe'
wget -N 'https://dl.fbaipublicfiles.com/fairseq/gpt2_bpe/dict.txt'

for LANG in source target
do
python -m examples.roberta.multiprocessing_bpe_encoder \
    --encoder-json encoder.json \
    --vocab-bpe vocab.bpe \
    --inputs "$SPLIT.$LANG" \
    --outputs "$SPLIT.bpe.$LANG" \
    --workers 60 \
    --keep-empty;
done

Binarize the data with:

fairseq-preprocess --source-lang "source" --target-lang "target" \
  --trainpref "train.bpe" --validpref "valid.bpe" --destdir "." \
  --workers 60 --srcdict dict.txt --tgtdict dict.txt

Then train the predictor with:

CUDA_VISIBLE_DEVICES=0 ./scripts/train_wu_predictors/train_word_unit_predictors.sh \
  $DATA_DIR \
  $ROBERTA_BASE_DIR \
  $MODEL_SAVE_DIR

About

Code for NAACL 2021 paper "Inference Time Style Control for Summarization".

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published