-
Notifications
You must be signed in to change notification settings - Fork 81
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added power-spectral-density curve (#170)
Added power-spectral-density graph. It shows how the power of a signal is distributed across different frequency components. This helps in understanding the frequency content of the signal, identifying dominant frequencies, and analyzing harmonic structures. https://github.com/user-attachments/assets/8f646ecd-d307-4cef-a141-612860c575f0 @dinxsh @Soumya-Kushwaha Please review and merge my PR.
- Loading branch information
Showing
2 changed files
with
188 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,186 @@ | ||
import PySimpleGUI as sg | ||
import pyaudio | ||
import numpy as np | ||
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg | ||
import soundfile as sf | ||
import matplotlib.pyplot as plt | ||
import subprocess | ||
import traceback | ||
from scipy.signal import welch | ||
|
||
# VARS CONSTS: | ||
|
||
_VARS = { | ||
"window": False, | ||
"stream": False, | ||
"audioData": np.array([]), | ||
"audioBuffer": np.array([]), | ||
"current_visualizer_process": None, | ||
} | ||
|
||
# PySimpleGUI INIT: | ||
AppFont = "Helvetica" | ||
sg.theme("DarkBlue3") | ||
|
||
menu_layout = [ | ||
['Run Visualizers', ['Amplitude-Frequency-Visualizer', 'Waveform', 'Spectrogram', 'Power-Spectral-Density']], | ||
] | ||
|
||
layout = [ | ||
[sg.Menu(menu_layout)], | ||
[ | ||
sg.Graph( | ||
canvas_size=(600, 600), | ||
graph_bottom_left=(-2, -2), | ||
graph_top_right=(102, 102), | ||
background_color="#809AB6", | ||
key="graph", | ||
tooltip="Power Spectral Density graph" | ||
) | ||
], | ||
[sg.Text("Progress:", text_color='white', font=('Helvetica', 15, 'bold')), sg.ProgressBar(4000, orientation="h", size=(20, 20), key="-PROG-")], | ||
[ | ||
sg.Button("Listen", font=AppFont, tooltip="Start listening"), | ||
sg.Button("Pause", font=AppFont, disabled=True, tooltip="Pause listening"), | ||
sg.Button("Resume", font=AppFont, disabled=True, tooltip="Resume listening"), | ||
sg.Button("Stop", font=AppFont, disabled=True, tooltip="Stop listening"), | ||
sg.Button("Save", font=AppFont, disabled=True, tooltip="Save the plot"), | ||
sg.Button("Exit", font=AppFont, tooltip="Exit the application"), | ||
], | ||
] | ||
|
||
_VARS["window"] = sg.Window("Mic to power spectral density plot", layout, finalize=True) | ||
graph = _VARS["window"]["graph"] | ||
|
||
# INIT vars: | ||
CHUNK = 1024 # Samples: 1024, 512, 256, 128 | ||
RATE = 44100 # Equivalent to Human Hearing at 40 kHz | ||
INTERVAL = 1 # Sampling Interval in Seconds -> Interval to listen | ||
TIMEOUT = 10 # In ms for the event loop | ||
pAud = pyaudio.PyAudio() | ||
|
||
# FUNCTIONS: | ||
|
||
def draw_figure(canvas, figure): | ||
figure_canvas_agg = FigureCanvasTkAgg(figure, canvas) | ||
figure_canvas_agg.draw() | ||
figure_canvas_agg.get_tk_widget().pack(side="top", fill="both", expand=1) | ||
return figure_canvas_agg | ||
|
||
def stop(): | ||
if _VARS["stream"]: | ||
_VARS["stream"].stop_stream() | ||
_VARS["stream"].close() | ||
_VARS["stream"] = None | ||
_VARS["window"]["-PROG-"].update(0) | ||
_VARS["window"]["Stop"].Update(disabled=True) | ||
_VARS["window"]["Listen"].Update(disabled=False) | ||
|
||
def pause(): | ||
if _VARS["stream"] and _VARS["stream"].is_active(): | ||
_VARS["stream"].stop_stream() | ||
_VARS["window"]["Pause"].Update(disabled=True) | ||
_VARS["window"]["Resume"].Update(disabled=False) | ||
|
||
def resume(): | ||
if _VARS["stream"] and not _VARS["stream"].is_active(): | ||
_VARS["stream"].start_stream() | ||
_VARS["window"]["Pause"].Update(disabled=False) | ||
_VARS["window"]["Resume"].Update(disabled=True) | ||
|
||
def save(): | ||
# Ask the user for a directory to save the image file | ||
folder = sg.popup_get_folder('Please select a directory to save the files') | ||
if folder: | ||
# Save the figure as an image file | ||
fig.savefig(f'{folder}/psd_output.png') | ||
sg.popup('Success', f'Image saved as {folder}/psd_output.png') | ||
# Save the recorded audio data to a file | ||
sf.write(f'{folder}/psd_output.wav', _VARS["audioBuffer"], RATE) | ||
sg.popup('Success', f'Audio saved as {folder}/psd_output.wav') | ||
|
||
def callback(in_data, frame_count, time_info, status): | ||
try: | ||
_VARS["audioData"] = np.frombuffer(in_data, dtype=np.int16) | ||
_VARS["audioBuffer"] = np.append(_VARS["audioBuffer"], _VARS["audioData"]) | ||
except Exception as e: | ||
print("Error in callback:", e) | ||
traceback.print_exc() | ||
return (in_data, pyaudio.paContinue) | ||
|
||
def listen(): | ||
try: | ||
_VARS["window"]["Stop"].Update(disabled=False) | ||
_VARS["window"]["Listen"].Update(disabled=True) | ||
_VARS["stream"] = pAud.open( | ||
format=pyaudio.paInt16, | ||
channels=1, | ||
rate=RATE, | ||
input=True, | ||
frames_per_buffer=CHUNK, | ||
stream_callback=callback, | ||
) | ||
_VARS["stream"].start_stream() | ||
except Exception as e: | ||
sg.popup_error(f"Error: {e}") | ||
|
||
def close_current_visualizer(): | ||
if _VARS["current_visualizer_process"] and _VARS["current_visualizer_process"].poll() is None: | ||
_VARS["current_visualizer_process"].kill() | ||
|
||
# INIT: | ||
fig, ax = plt.subplots() # create a figure and an axis object | ||
fig_agg = draw_figure(graph.TKCanvas, fig) # draw the figure on the graph | ||
|
||
# MAIN LOOP | ||
while True: | ||
event, values = _VARS["window"].read(timeout=TIMEOUT) | ||
if event == "Exit" or event == sg.WIN_CLOSED: | ||
stop() | ||
pAud.terminate() | ||
break | ||
if event == "Listen": | ||
listen() | ||
_VARS["window"]["Save"].Update(disabled=False) | ||
if event == "Pause": | ||
pause() | ||
if event == "Resume": | ||
resume() | ||
if event == "Stop": | ||
stop() | ||
if event == "Save": | ||
save() | ||
if event == 'Amplitude-Frequency-Visualizer': | ||
close_current_visualizer() | ||
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Amplitude-Frequency-Visualizer.py']) | ||
_VARS["window"].close() | ||
break | ||
if event == 'Waveform': | ||
close_current_visualizer() | ||
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Waveform.py']) | ||
_VARS["window"].close() | ||
break | ||
if event == 'Spectrogram': | ||
close_current_visualizer() | ||
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Spectrogram.py']) | ||
_VARS["window"].close() | ||
break | ||
if event == 'Power-Spectral-Density': | ||
close_current_visualizer() | ||
_VARS["current_visualizer_process"] = subprocess.Popen(['python', 'Power-Spectral-Density.py']) | ||
_VARS["window"].close() | ||
break | ||
|
||
elif _VARS["audioData"].size != 0: | ||
try: | ||
_VARS["window"]["-PROG-"].update(np.amax(_VARS["audioData"])) | ||
f, Pxx = welch(_VARS["audioData"], RATE, nperseg=CHUNK, scaling='density') | ||
ax.clear() | ||
ax.semilogy(f, Pxx) | ||
ax.set_title("Power Spectral Density") | ||
ax.set_ylabel("Power/Frequency [dB/Hz]") | ||
ax.set_xlabel("Frequency [Hz]") | ||
fig_agg.draw() | ||
except Exception as e: | ||
print("Error during plotting:", e) | ||
traceback.print_exc() |