by Wang Liu, Puhong Duan, Zhuojun Xie, Xudong Kang, and Shutao Li
Fig. 1 An overview of the proposed UemDA.
- conda create -n uemda python=3.8
- source activate uemda
- pip install torch==1.8.1+cu111 torchvision==0.9.1+cu111 torchaudio==0.8.1 -f https://download.pytorch.org/whl/torch_stable.html
- conda install pytorch-scatter -c pyg
- pip install ever-beta
- pip install -r requirement.txt
- pip install -e .
- Download the raw datasets here.
- Run the preprocess script in ./convert_datasets/ to crop train, val, test sets:
python convert_datasets/convert_potsdam.py
python convert_datasets/convert_vaihingen.py
- The prepared data is formatted as follows:
./data
---- IsprsDA
---- Potsdam
---- ann_dir
---- img_dir
---- Vaihingen
---- ann_dir
---- img_dir\ - Generate local regions by run
python tools/generate_superpixels.py
bash runs/uemda/run_2potsdam.sh
bash runs/uemda/run_2vaihingen.sh
Run evaluating: python tools/eval.py --config-path st.uemda.2potsdam --ckpt-path log/uemda/2potsdam/ssl/Potsdam_best.pth --test 1
Run evaluating: python tools/eval.py --config-path st.uemda.2vaihingen --ckpt-path log/uemda/2vaihingen/ssl/Vaihingen_best.pth --test 1
python tools/infer_single.py st.uemda.2potsdam log/uemda/ssl/Potsdam_best.pth [image-path] --save-dir [save-dir-path]
@ARTICLE{10666777,
author={Liu, Wang and Duan, Puhong and Xie, Zhuojun and Kang, Xudong and Li, Shutao},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Uncertain Example Mining Network for Domain Adaptive Segmentation of Remote Sensing Images},
year={2024},
volume={62},
pages={1-14},
doi={10.1109/TGRS.2024.3443071}
}