Skip to content

TahaRasouli/RAG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAG with Llama3 on Groq

This cookbook shows how to do retrieval-augmented generation (RAG) using Llama3 on Groq.

For embeddings we can either use Ollama or OpenAI.

Note: Fork and clone this repository if needed

1. Create a virtual environment

python3 -m venv ~/.venvs/aienv
source ~/.venvs/aienv/bin/activate

2. Export your Groq API Key

export GROQ_API_KEY=***

3. Use Ollama or OpenAI for embeddings

Since Groq doesnt provide embeddings yet, you can either use Ollama or OpenAI for embeddings.

  • To use Ollama for embeddings Install Ollama and run the nomic-embed-text model
ollama run nomic-embed-text
  • To use OpenAI for embeddings, export your OpenAI API key
export OPENAI_API_KEY=sk-***

4. Install libraries

pip install -r cookbook/llms/groq/rag/requirements.txt

5. Run PgVector

Install docker desktop first.

  • Run using a helper script
./cookbook/run_pgvector.sh
  • OR run using the docker run command
docker run -d \
  -e POSTGRES_DB=ai \
  -e POSTGRES_USER=ai \
  -e POSTGRES_PASSWORD=ai \
  -e PGDATA=/var/lib/postgresql/data/pgdata \
  -v pgvolume:/var/lib/postgresql/data \
  -p 5532:5432 \
  --name pgvector \
  phidata/pgvector:16

6. Run RAG App

streamlit run cookbook/llms/groq/rag/app.py

7. Message on discord if you have any questions

8. Star ⭐️ the project if you like it.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages