TheBloke's LLM work is generously supported by a grant from andreessen horowitz (a16z)
Claire 7B 0.1 - AWQ
- Model creator: OpenLLM France
- Original model: Claire 7B 0.1
Description
This repo contains AWQ model files for OpenLLM France's Claire 7B 0.1.
These files were quantised using hardware kindly provided by Massed Compute.
About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
It is supported by:
- Text Generation Webui - using Loader: AutoAWQ
- vLLM - Llama and Mistral models only
- Hugging Face Text Generation Inference (TGI)
- Transformers version 4.35.0 and later, from any code or client that supports Transformers
- AutoAWQ - for use from Python code
Repositories available
- AWQ model(s) for GPU inference.
- GPTQ models for GPU inference, with multiple quantisation parameter options.
- 2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference
- OpenLLM France's original unquantised fp16 model in pytorch format, for GPU inference and for further conversions
Prompt template: OpenLLM-France
- Bonjour BotName, {prompt}
- Bonjour UserName,
Provided files, and AWQ parameters
I currently release 128g GEMM models only. The addition of group_size 32 models, and GEMV kernel models, is being actively considered.
Models are released as sharded safetensors files.
Branch | Bits | GS | AWQ Dataset | Seq Len | Size |
---|---|---|---|---|---|
main | 4 | 64 | French news | 2048 | 4.75 GB |
How to easily download and use this model in text-generation-webui
Please make sure you're using the latest version of text-generation-webui.
It is strongly recommended to use the text-generation-webui one-click-installers unless you're sure you know how to make a manual install.
- Click the Model tab.
- Under Download custom model or LoRA, enter
TheBloke/Claire-7B-0.1-AWQ
. - Click Download.
- The model will start downloading. Once it's finished it will say "Done".
- In the top left, click the refresh icon next to Model.
- In the Model dropdown, choose the model you just downloaded:
Claire-7B-0.1-AWQ
- Select Loader: AutoAWQ.
- Click Load, and the model will load and is now ready for use.
- If you want any custom settings, set them and then click Save settings for this model followed by Reload the Model in the top right.
- Once you're ready, click the Text Generation tab and enter a prompt to get started!
Multi-user inference server: vLLM
Documentation on installing and using vLLM can be found here.
- Please ensure you are using vLLM version 0.2 or later.
- When using vLLM as a server, pass the
--quantization awq
parameter.
For example:
python3 -m vllm.entrypoints.api_server --model TheBloke/Claire-7B-0.1-AWQ --quantization awq --dtype auto
- When using vLLM from Python code, again set
quantization=awq
.
For example:
from vllm import LLM, SamplingParams
prompts = [
"Tell me about AI",
"Write a story about llamas",
"What is 291 - 150?",
"How much wood would a woodchuck chuck if a woodchuck could chuck wood?",
]
prompt_template=f'''- Bonjour BotName, {prompt}
- Bonjour UserName,
'''
prompts = [prompt_template.format(prompt=prompt) for prompt in prompts]
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)
llm = LLM(model="TheBloke/Claire-7B-0.1-AWQ", quantization="awq", dtype="auto")
outputs = llm.generate(prompts, sampling_params)
# Print the outputs.
for output in outputs:
prompt = output.prompt
generated_text = output.outputs[0].text
print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")
Multi-user inference server: Hugging Face Text Generation Inference (TGI)
Use TGI version 1.1.0 or later. The official Docker container is: ghcr.io/huggingface/text-generation-inference:1.1.0
Example Docker parameters:
--model-id TheBloke/Claire-7B-0.1-AWQ --port 3000 --quantize awq --max-input-length 3696 --max-total-tokens 4096 --max-batch-prefill-tokens 4096
Example Python code for interfacing with TGI (requires huggingface-hub 0.17.0 or later):
pip3 install huggingface-hub
from huggingface_hub import InferenceClient
endpoint_url = "https://your-endpoint-url-here"
prompt = "Tell me about AI"
prompt_template=f'''- Bonjour BotName, {prompt}
- Bonjour UserName,
'''
client = InferenceClient(endpoint_url)
response = client.text_generation(prompt,
max_new_tokens=128,
do_sample=True,
temperature=0.7,
top_p=0.95,
top_k=40,
repetition_penalty=1.1)
print(f"Model output: ", response)
Inference from Python code using Transformers
Install the necessary packages
- Requires: Transformers 4.35.0 or later.
- Requires: AutoAWQ 0.1.6 or later.
pip3 install --upgrade "autoawq>=0.1.6" "transformers>=4.35.0"
Note that if you are using PyTorch 2.0.1, the above AutoAWQ command will automatically upgrade you to PyTorch 2.1.0.
If you are using CUDA 11.8 and wish to continue using PyTorch 2.0.1, instead run this command:
pip3 install https://github.com/casper-hansen/AutoAWQ/releases/download/v0.1.6/autoawq-0.1.6+cu118-cp310-cp310-linux_x86_64.whl
If you have problems installing AutoAWQ using the pre-built wheels, install it from source instead:
pip3 uninstall -y autoawq
git clone https://github.com/casper-hansen/AutoAWQ
cd AutoAWQ
pip3 install .
Transformers example code (requires Transformers 4.35.0 and later)
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
model_name_or_path = "TheBloke/Claire-7B-0.1-AWQ"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(
model_name_or_path,
low_cpu_mem_usage=True,
device_map="cuda:0"
)
# Using the text streamer to stream output one token at a time
streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
prompt = "Tell me about AI"
prompt_template=f'''- Bonjour BotName, {prompt}
- Bonjour UserName,
'''
# Convert prompt to tokens
tokens = tokenizer(
prompt_template,
return_tensors='pt'
).input_ids.cuda()
generation_params = {
"do_sample": True,
"temperature": 0.7,
"top_p": 0.95,
"top_k": 40,
"max_new_tokens": 512,
"repetition_penalty": 1.1
}
# Generate streamed output, visible one token at a time
generation_output = model.generate(
tokens,
streamer=streamer,
**generation_params
)
# Generation without a streamer, which will include the prompt in the output
generation_output = model.generate(
tokens,
**generation_params
)
# Get the tokens from the output, decode them, print them
token_output = generation_output[0]
text_output = tokenizer.decode(token_output)
print("model.generate output: ", text_output)
# Inference is also possible via Transformers' pipeline
from transformers import pipeline
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
**generation_params
)
pipe_output = pipe(prompt_template)[0]['generated_text']
print("pipeline output: ", pipe_output)
Compatibility
The files provided are tested to work with:
- text-generation-webui using
Loader: AutoAWQ
. - vLLM version 0.2.0 and later.
- Hugging Face Text Generation Inference (TGI) version 1.1.0 and later.
- Transformers version 4.35.0 and later.
- AutoAWQ version 0.1.1 and later.
Discord
For further support, and discussions on these models and AI in general, join us at:
Thanks, and how to contribute
Thanks to the chirper.ai team!
Thanks to Clay from gpus.llm-utils.org!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
- Patreon: https://patreon.com/TheBlokeAI
- Ko-Fi: https://ko-fi.com/TheBlokeAI
Special thanks to: Aemon Algiz.
Patreon special mentions: Brandon Frisco, LangChain4j, Spiking Neurons AB, transmissions 11, Joseph William Delisle, Nitin Borwankar, Willem Michiel, Michael Dempsey, vamX, Jeffrey Morgan, zynix, jjj, Omer Bin Jawed, Sean Connelly, jinyuan sun, Jeromy Smith, Shadi, Pawan Osman, Chadd, Elijah Stavena, Illia Dulskyi, Sebastain Graf, Stephen Murray, terasurfer, Edmond Seymore, Celu Ramasamy, Mandus, Alex, biorpg, Ajan Kanaga, Clay Pascal, Raven Klaugh, 阿明, K, ya boyyy, usrbinkat, Alicia Loh, John Villwock, ReadyPlayerEmma, Chris Smitley, Cap'n Zoog, fincy, GodLy, S_X, sidney chen, Cory Kujawski, OG, Mano Prime, AzureBlack, Pieter, Kalila, Spencer Kim, Tom X Nguyen, Stanislav Ovsiannikov, Michael Levine, Andrey, Trailburnt, Vadim, Enrico Ros, Talal Aujan, Brandon Phillips, Jack West, Eugene Pentland, Michael Davis, Will Dee, webtim, Jonathan Leane, Alps Aficionado, Rooh Singh, Tiffany J. Kim, theTransient, Luke @flexchar, Elle, Caitlyn Gatomon, Ari Malik, subjectnull, Johann-Peter Hartmann, Trenton Dambrowitz, Imad Khwaja, Asp the Wyvern, Emad Mostaque, Rainer Wilmers, Alexandros Triantafyllidis, Nicholas, Pedro Madruga, SuperWojo, Harry Royden McLaughlin, James Bentley, Olakabola, David Ziegler, Ai Maven, Jeff Scroggin, Nikolai Manek, Deo Leter, Matthew Berman, Fen Risland, Ken Nordquist, Manuel Alberto Morcote, Luke Pendergrass, TL, Fred von Graf, Randy H, Dan Guido, NimbleBox.ai, Vitor Caleffi, Gabriel Tamborski, knownsqashed, Lone Striker, Erik Bjäreholt, John Detwiler, Leonard Tan, Iucharbius
Thank you to all my generous patrons and donaters!
And thank you again to a16z for their generous grant.
Original model card: OpenLLM France's Claire 7B 0.1
Claire-7B-0.1
Claire-7B-0.1 is a 7B parameter causal decoder-only model built by LINAGORA and OpenLLM-France adapted from Falcon-7b on French conversational data.
Claire-7B-0.1 is a pretrained language model designed to be attuned to the dynamics of linguistic interactions in dialogue. Without further training, its expected use is to generate continuations of dialogues. Its main purpose is to serve as a base model for fine-tuning on dialogue generation (e.g., chat) and dialogue understanding (e.g., meeting summarization) tasks. Please note that due to its training, the model is prone to generate dialogues with disfluencies and other constructions common to spoken language.
Typical usage
import transformers
import torch
model_name = "OpenLLM-France/Claire-7B-0.1"
tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
model = transformers.AutoModelForCausalLM.from_pretrained(model_name,
device_map="auto",
torch_dtype=torch.bfloat16,
load_in_4bit=True # For efficient inference, if supported by the GPU card
)
pipeline = transformers.pipeline("text-generation", model=model, tokenizer=tokenizer)
generation_kwargs = dict(
num_return_sequences=1, # Number of variants to generate.
return_full_text= False, # Do not include the prompt in the generated text.
max_new_tokens=200, # Maximum length for the output text.
do_sample=True, top_k=10, temperature=1.0, # Sampling parameters.
pad_token_id=tokenizer.eos_token_id, # Just to avoid a harmless warning.
)
prompt = """\
- Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
- Bonjour Camille,\
"""
completions = pipeline(prompt, **generation_kwargs)
for completion in completions:
print(prompt + " […]" + completion['generated_text'])
This will print something like:
- Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
- Bonjour Camille, […] je vous prépare un plat de saison, une daube provençale.
- Ah je ne connais pas cette recette.
- C'est très facile à préparer, vous n'avez qu'à mettre de l'eau dans une marmite, y mettre de l'oignon émincé, des carottes coupées en petits morceaux, et vous allez mettre votre viande de bœuf coupé en petits morceaux également.
- Je n'ai jamais cuisiné de viande de bœuf, mais c'est vrai que ça a l'air bien facile.
- Vous n'avez plus qu'à laisser mijoter, et ensuite il sera temps de servir les clients.
- Très bien.
You will need at least 6GB of VRAM to run inference using 4bit quantization (16GB of VRAM without 4bit quantization).
If you have trouble running this code, make sure you have recent versions of torch
, transformers
and accelerate
(see requirements.txt).
Typical prompts
Claire-7B-0.1 was trained on diarized French conversations. During training, the dialogues were normalized in several formats. The possible formats for expected prompts are as follows:
A monologue can be specified as a single line prompt (though keep in mind that Claire might still return a dialogue because of its training):
prompt = "Mesdames et messieurs les députés, chers collègues, bonsoir. Vous l'aurez peut-être remarqué, je cite rarement"
A dialogue between two speakers can be specified with one line per speech turn starting with a dash:
prompt = """\
- Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
- Bonjour Camille,\
"""
A dialogue or multilogue (with two or more speakers) can be specified with lines that start with [Intervenant X:]
where X
is a number:
prompt = """\
[Intervenant 1:] Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
[Intervenant 2:] Bonjour Camille,\
"""
A dialogue or multilogue with named speakers can be specified with lines that start with [SpeakerName:]
where SpeakerName
can be a first name, a first and a last name, a nickname, a title…
prompt = """\
[Mme Camille Durand:] Bonjour Dominique, qu'allez-vous nous cuisiner aujourd'hui ?
[Mr. Dominique Petit:] Bonjour Camille,\
"""
Training Details
Training Data
Claire-7B-0.1 was tuned from Falcon-7b on the following data distribution:
Data type | Words | Training Sampling Weight | Sources |
---|---|---|---|
Parliamentary Proceedings | 135M | 35% | assemblee-nationale.fr |
Theatre | 16M | 18% | theatre-classique.fr, theatregratuit.com |
Interviews | 6.4M | 29% | TCOF, CFPP, CFPB, ACSYNT, PFC, Valibel (ORFEO), ESLO |
Free Conversations | 2.2M | 10% | CRFP, OFROM, CID, Rhapsodie, ParisStories, PFC, CLAPI, C-ORAL-ROM (ORFEO), LinTO, ESLO |
Meetings | 1.2M | 5% | SUMM-RE, LinTO, Réunions de travail (ORFEO) |
Debates | 402k | <2% | FreD, ESLO |
Assistance | 159k | <1% | Fleuron (ORFEO), Accueil UBS, OTG, ESLO |
Presentation, Formal Address | 86k | <0.5% | Valibel (ORFEO), LinTO, ESLO |
Training data was augmented with the following techniques:
- varying the format used to indicate speech turns (dashes or [XXX:])
- substituting [Intervenant X:] for [SpeakerName:] or vice versa, where [SpeakerName:] might be a real name or a randomly generated name
- removing punctuation marks and/or casing (to prepare the model for transcripts produced by some Automatic Speech Recognition systems)
Long conversations were truncated at a maximum of 2048 tokens. Where possible, they were split between speaker turns.
While the model has been trained and evaluated only on French dialogues, it may be able to generate conversations in other languages from the original Falcon-7b training data.
Training Procedure
Claire-7B-0.1 is a causal decoder-only model trained on a causal language modeling task (i.e., predict the next token). See Falcon-7b for more details.
Claire-7B-0.1 was trained on 1 A100 80GB GPU for about 50 GPU hours.
Hyperparameters were the following:
Hyperparameter | Value |
---|---|
Precision | bfloat16 |
Optimizer | AdamW |
Learning rate | 1e-4 |
Weight decay | 1e-2 |
Batch size | 132 |
LoRA rank | 16 |
LoRA alpha | 32 |
Dropout | 0.05 |
gradient clipping | 1 |
Evaluation
To evaluate Claire-7B-0.1’s ability to generate natural sounding, French conversations, we compared its responses to a variety of prompts with those of three other models:
- Falcon-7b,
- Mistral-7B-v0.1
- Claire-Mistral-7B-0.1 (a version of Mistral-7B-v0.1 adapted in the same fashion as Claire-7B-0.1)
We tested an even mixture of monologue and dialogue-style prompts. Each of the four generated responses was evaluated along three dimensions: Interaction, Fluency and Relevance. Evaluators were also asked to rank the four responses by preference.
Our results confirm that continual pre-training of Falcon-7b and Mistral-7B-v0.1 leads to improvement (relative to the base models) along all three evaluation dimensions and that Claire-7B-0.1 outperforms the adapted Mistral counterpart in the Fluency and Relevance categories (and in the Interaction category if we focus on dialogue-style prompts).
Ranking results also reveal a clear subjective preference for Claire-7B-0.1, as shown in the following table:
... over Claire-Falcon |
... over Claire-Mistral |
... over Falcon |
... over Mistral |
|
---|---|---|---|---|
prefer Claire-Falcon ... |
62.2% | 63.9% | 83.8% | |
prefer Claire-Mistral ... |
34.8% | 56.2% | 75.3% | |
prefer Falcon ... |
36.1% | 43.8% | 81.4% | |
prefer Mistral ... |
16.2% | 24.7% | 18.6% |
(In this table, "Claire-Falcon" stands for Claire-7B-0.1, "Falcon", for Falcon-7b, "Mistral", for Mistral-7B-v0.1 and "Claire-Mistral", for Claire-Mistral-7B-0.1.)
Please note that the model can generate disfluencies and humorous responses as a result of its training on spoken and theatrical text.
More evaluation details will be provided in a separate publication.
License
Given that some of the corpora used for training are only available under CC-BY-NC-SA licenses, Claire-7B-0.1 is made available under the CC-BY-NC-SA 4.0 license.
You can find a variant of this model published under the Apache 2.0 license at OpenLLM-France/Claire-7B-Apache-0.1.
Acknowledgements
This work was performed using HPC resources from GENCI–IDRIS (Grant 2023-AD011014561).
Claire-7B-0.1 was created by members of LINAGORA (in alphabetical order): Ismaïl Harrando, Julie Hunter, Jean-Pierre Lorré, Jérôme Louradour, Michel-Marie Maudet, Virgile Rennard, Guokan Shang.
Special thanks to partners from the OpenLLM-France community, especially Christophe Cerisara (LORIA), Pierre-Carl Langlais and Anastasia Stasenko (OpSci), and Pierre Colombo, for valuable advice.
Contact
- Downloads last month
- 25