On Infinite-Width Hypernetworks(arxiv).
Pytorch Implementation of "On Infinite-Width Hypernetworks" (NeurIPS 2020)
- Python 3.6+
- Pytorch 0.4
Run rotation_experiment/main.py
. You can use the following examples to run:
python main.py --dataset mnist --lr 0.01 --epochs 100 --var epoch
python main.py --dataset cifar --lr 0.01 --epochs 100 --var epoch
python main.py --dataset cifar --epochs 100 --var lr
Run hyperkernel/main.py
. You can use the following examples to run:
python main.py --completion True --unique_f 500
--g_sample_per_unique 20 --depth_g 3 --depth_f 3
python main.py --completion False --unique_f 500
--g_sample_per_unique 20 --depth_g 3 --depth_f 3
The file utils/input_data is taken from the open-source code of Tensorflow 1.4.
If you found this code useful, please cite the following paper:
@inproceedings{hyperkernel2020,
title={On Infinite-Width Hypernetworks},
author={Etai Littwin and Tomer Galanti and Lior Wolf and Greg Yang},
booktitle={NeurIPS},
year={2020}
}