Skip to content

Official code for "On Infinite-Width Hypernetworks", NeurIPS 2020

Notifications You must be signed in to change notification settings

TomerGalanti/InfiniteWidthHypernets

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 

Repository files navigation

On Infinite-Width Hypernetworks(arxiv).

Pytorch Implementation of "On Infinite-Width Hypernetworks" (NeurIPS 2020)

Prerequisites

  • Python 3.6+
  • Pytorch 0.4

Rotations Prediction

Run rotation_experiment/main.py. You can use the following examples to run:

python main.py --dataset mnist --lr 0.01 --epochs 100 --var epoch
python main.py --dataset cifar --lr 0.01 --epochs 100 --var epoch
python main.py --dataset cifar --epochs 100 --var lr

Image completeion/representation using the hyperkernel

Run hyperkernel/main.py. You can use the following examples to run:

python main.py --completion True --unique_f 500 
            --g_sample_per_unique 20 --depth_g 3 --depth_f 3

python main.py --completion False --unique_f 500 
            --g_sample_per_unique 20 --depth_g 3 --depth_f 3

Acknowledgements

The file utils/input_data is taken from the open-source code of Tensorflow 1.4.

Reference

If you found this code useful, please cite the following paper:

@inproceedings{hyperkernel2020,
  title={On Infinite-Width Hypernetworks},
  author={Etai Littwin and Tomer Galanti and Lior Wolf and Greg Yang},
  booktitle={NeurIPS},
  year={2020}
}

About

Official code for "On Infinite-Width Hypernetworks", NeurIPS 2020

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages