Skip to content

Conversation

@mhauru
Copy link
Member

@mhauru mhauru commented Oct 27, 2025

The VarNamedVector inner constructor has some checks to make sure that the data being fed in is consistent. This seems like a sensible idea. However, especially one of the checks is a bit expensive, and they were being called all the time. This PR turns them off when they are unnecessary, most notably when calling unflatten.

@github-actions
Copy link
Contributor

github-actions bot commented Oct 27, 2025

Benchmark Report for Commit 427581b

Computer Information

Julia Version 1.11.7
Commit f2b3dbda30a (2025-09-08 12:10 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Linux (x86_64-linux-gnu)
  CPU: 4 × AMD EPYC 7763 64-Core Processor
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, znver3)
Threads: 1 default, 0 interactive, 1 GC (on 4 virtual cores)

Benchmark Results

┌───────────────────────┬───────┬─────────────┬───────────────────┬────────┬────────────────┬─────────────────┐
│                 Model │   Dim │  AD Backend │           VarInfo │ Linked │ t(eval)/t(ref) │ t(grad)/t(eval) │
├───────────────────────┼───────┼─────────────┼───────────────────┼────────┼────────────────┼─────────────────┤
│ Simple assume observe │     1 │ forwarddiff │             typed │  false │            6.5 │             1.7 │
│           Smorgasbord │   201 │ forwarddiff │             typed │  false │          741.0 │            44.8 │
│           Smorgasbord │   201 │ forwarddiff │ simple_namedtuple │   true │          355.8 │            67.2 │
│           Smorgasbord │   201 │ forwarddiff │           untyped │   true │          784.6 │            36.6 │
│           Smorgasbord │   201 │ forwarddiff │       simple_dict │   true │         6786.2 │            25.6 │
│           Smorgasbord │   201 │ forwarddiff │      typed_vector │   true │          813.2 │            40.3 │
│           Smorgasbord │   201 │ forwarddiff │    untyped_vector │   true │          734.8 │            40.3 │
│           Smorgasbord │   201 │ reversediff │             typed │   true │          905.4 │            45.6 │
│           Smorgasbord │   201 │    mooncake │             typed │   true │          718.9 │             5.9 │
│           Smorgasbord │   201 │      enzyme │             typed │   true │          894.0 │             3.9 │
│    Loop univariate 1k │  1000 │    mooncake │             typed │   true │         3893.3 │             6.6 │
│       Multivariate 1k │  1000 │    mooncake │             typed │   true │         1029.4 │             8.7 │
│   Loop univariate 10k │ 10000 │    mooncake │             typed │   true │        43060.8 │             6.1 │
│      Multivariate 10k │ 10000 │    mooncake │             typed │   true │         8577.8 │            10.0 │
│               Dynamic │    10 │    mooncake │             typed │   true │          118.4 │            12.1 │
│              Submodel │     1 │    mooncake │             typed │   true │            9.0 │             6.3 │
│                   LDA │    12 │ reversediff │             typed │   true │          987.4 │             2.0 │
└───────────────────────┴───────┴─────────────┴───────────────────┴────────┴────────────────┴─────────────────┘

@codecov
Copy link

codecov bot commented Oct 27, 2025

Codecov Report

❌ Patch coverage is 82.05128% with 21 lines in your changes missing coverage. Please review.
✅ Project coverage is 81.17%. Comparing base (90b591b) to head (427581b).
⚠️ Report is 1 commits behind head on main.

Files with missing lines Patch % Lines
src/varnamedvector.jl 77.50% 18 Missing ⚠️
src/varinfo.jl 93.33% 2 Missing ⚠️
src/debug_utils.jl 0.00% 1 Missing ⚠️
Additional details and impacted files
@@            Coverage Diff             @@
##             main    #1092      +/-   ##
==========================================
- Coverage   81.43%   81.17%   -0.26%     
==========================================
  Files          40       40              
  Lines        3749     3793      +44     
==========================================
+ Hits         3053     3079      +26     
- Misses        696      714      +18     

☔ View full report in Codecov by Sentry.
📢 Have feedback on the report? Share it here.

🚀 New features to boost your workflow:
  • ❄️ Test Analytics: Detect flaky tests, report on failures, and find test suite problems.

@mhauru
Copy link
Member Author

mhauru commented Oct 27, 2025

Some benchmarks of the Smorgasbord model of VNV vs Metadata.

EDIT: The untyped_vector benchmarks here are wrong. See below for fixed benchmarks.

On main:

┌─────────────┬─────┬─────────────┬────────────────┬────────┬────────────────┬─────────────────┐
│       Model │ Dim │  AD Backend │        VarInfo │ Linked │ t(eval)/t(ref) │ t(grad)/t(eval) │
├─────────────┼─────┼─────────────┼────────────────┼────────┼────────────────┼─────────────────┤
│ Smorgasbord │ 201 │ forwarddiff │        untyped │  false │         3946.7 │             3.5 │
│ Smorgasbord │ 201 │ forwarddiff │ untyped_vector │  false │          581.5 │            32.3 │
│ Smorgasbord │ 201 │ forwarddiff │          typed │  false │          352.4 │            46.1 │
│ Smorgasbord │ 201 │ forwarddiff │   typed_vector │  false │          580.7 │            32.6 │
│ Smorgasbord │ 201 │ reversediff │        untyped │   true │          270.9 │            78.3 │
│ Smorgasbord │ 201 │ reversediff │ untyped_vector │   true │          511.8 │            41.7 │
│ Smorgasbord │ 201 │ reversediff │          typed │   true │          297.1 │            71.6 │
│ Smorgasbord │ 201 │ reversediff │   typed_vector │   true │          513.6 │            41.6 │
└─────────────┴─────┴─────────────┴────────────────┴────────┴────────────────┴─────────────────┘

On this PR:

┌─────────────┬─────┬─────────────┬────────────────┬────────┬────────────────┬─────────────────┐
│       Model │ Dim │  AD Backend │        VarInfo │ Linked │ t(eval)/t(ref) │ t(grad)/t(eval) │
├─────────────┼─────┼─────────────┼────────────────┼────────┼────────────────┼─────────────────┤
│ Smorgasbord │ 201 │ forwarddiff │        untyped │  false │         3806.3 │             3.6 │
│ Smorgasbord │ 201 │ forwarddiff │ untyped_vector │  false │          378.8 │            42.7 │
│ Smorgasbord │ 201 │ forwarddiff │          typed │  false │          346.5 │            43.3 │
│ Smorgasbord │ 201 │ forwarddiff │   typed_vector │  false │          381.4 │            42.3 │
│ Smorgasbord │ 201 │ reversediff │        untyped │   true │          263.0 │            79.2 │
│ Smorgasbord │ 201 │ reversediff │ untyped_vector │   true │          310.8 │            66.4 │
│ Smorgasbord │ 201 │ reversediff │          typed │   true │          290.8 │            71.1 │
│ Smorgasbord │ 201 │ reversediff │   typed_vector │   true │          311.7 │            66.3 │
└─────────────┴─────┴─────────────┴────────────────┴────────┴────────────────┴─────────────────┘

@mhauru mhauru marked this pull request as ready for review October 27, 2025 10:51
@mhauru mhauru requested a review from penelopeysm October 27, 2025 10:52
@mhauru
Copy link
Member Author

mhauru commented Oct 27, 2025

Test failures are the same as on main.

Co-authored-by: Penelope Yong <[email protected]>
@github-actions
Copy link
Contributor

DynamicPPL.jl documentation for PR #1092 is available at:
https://TuringLang.github.io/DynamicPPL.jl/previews/PR1092/

@mhauru
Copy link
Member Author

mhauru commented Oct 27, 2025

Fixed benchmarks:

On main:

┌─────────────┬─────┬─────────────┬────────────────┬────────┬────────────────┬─────────────────┐
│       Model │ Dim │  AD Backend │        VarInfo │ Linked │ t(eval)/t(ref) │ t(grad)/t(eval) │
├─────────────┼─────┼─────────────┼────────────────┼────────┼────────────────┼─────────────────┤
│ Smorgasbord │ 201 │ forwarddiff │        untyped │  false │        10970.4 │             3.6 │
│ Smorgasbord │ 201 │ forwarddiff │ untyped_vector │  false │       240018.2 │            16.3 │
│ Smorgasbord │ 201 │ forwarddiff │          typed │  false │          919.3 │            47.1 │
│ Smorgasbord │ 201 │ forwarddiff │   typed_vector │  false │         1502.9 │            32.9 │
│ Smorgasbord │ 201 │ reversediff │        untyped │   true │          743.1 │            75.3 │
│ Smorgasbord │ 201 │ reversediff │ untyped_vector │   true │       234413.8 │             1.2 │
│ Smorgasbord │ 201 │ reversediff │          typed │   true │          800.3 │            70.0 │
│ Smorgasbord │ 201 │ reversediff │   typed_vector │   true │         1374.2 │            41.4 │
└─────────────┴─────┴─────────────┴────────────────┴────────┴────────────────┴─────────────────┘

On this PR:

┌─────────────┬─────┬─────────────┬────────────────┬────────┬────────────────┬─────────────────┐
│       Model │ Dim │  AD Backend │        VarInfo │ Linked │ t(eval)/t(ref) │ t(grad)/t(eval) │
├─────────────┼─────┼─────────────┼────────────────┼────────┼────────────────┼─────────────────┤
│ Smorgasbord │ 201 │ forwarddiff │        untyped │  false │        11705.7 │             3.8 │
│ Smorgasbord │ 201 │ forwarddiff │ untyped_vector │  false │        32367.4 │            12.0 │
│ Smorgasbord │ 201 │ forwarddiff │          typed │  false │         1068.9 │            44.9 │
│ Smorgasbord │ 201 │ forwarddiff │   typed_vector │  false │         1105.7 │            41.2 │
│ Smorgasbord │ 201 │ reversediff │        untyped │   true │          819.4 │            75.4 │
│ Smorgasbord │ 201 │ reversediff │ untyped_vector │   true │        26486.9 │             2.9 │
│ Smorgasbord │ 201 │ reversediff │          typed │   true │          874.6 │            70.2 │
│ Smorgasbord │ 201 │ reversediff │   typed_vector │   true │          945.5 │            65.4 │
└─────────────┴─────┴─────────────┴────────────────┴────────┴────────────────┴─────────────────┘

You may wonder why the whole scale of these numbers as jumped up, compared to the earlier benchmarks. I wonder that too. Maybe my laptop started throttling or something. :/

@mhauru mhauru requested a review from penelopeysm October 27, 2025 13:01
Copy link
Member

@penelopeysm penelopeysm left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I'm happy! Could you do the usual version stuff? Feel free to merge after that.

@penelopeysm
Copy link
Member

penelopeysm commented Oct 27, 2025

(Feel free to claim v0.38.3, I'll unrevert my other PR later.)

@mhauru
Copy link
Member Author

mhauru commented Oct 27, 2025

I'm working on more, very similar performance improvements to VNV. I would fold them into the same release.

mhauru and others added 3 commits October 29, 2025 14:30
* Change VNV to use Dict rather than OrderedDict

* Change concretisation from map(identity, x) to a comprehension

* Improve tighten_types!! and loosen_types!!

* Fix use of set_transformed!!

* Fix push!! for VarInfos

* Change the default element types in VNV to be Union{}

* In untyped_vector_varinfo, don't rely on Metadata

* Code style

* Run formatter

* In VNV, use typejoin rather than promote_type

* Bump patch version to 0.38.4
@mhauru mhauru added this pull request to the merge queue Oct 29, 2025
Merged via the queue into main with commit 80cf12d Oct 29, 2025
18 of 19 checks passed
@mhauru mhauru deleted the mhauru/varnamedvector-speed branch October 29, 2025 17:39
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

3 participants