-
Notifications
You must be signed in to change notification settings - Fork 227
Support DPPL 0.37 #2550
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: main
Are you sure you want to change the base?
Support DPPL 0.37 #2550
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
|
@@ -34,8 +34,8 @@ function Optim.optimize( | |||||||||||
options::Optim.Options=Optim.Options(); | ||||||||||||
kwargs..., | ||||||||||||
) | ||||||||||||
ctx = Optimisation.OptimizationContext(DynamicPPL.LikelihoodContext()) | ||||||||||||
f = Optimisation.OptimLogDensity(model, ctx) | ||||||||||||
vi = DynamicPPL.setaccs!!(VarInfo(model), (DynamicPPL.LogLikelihoodAccumulator(),)) | ||||||||||||
f = Optimisation.OptimLogDensity(model, vi) | ||||||||||||
init_vals = DynamicPPL.getparams(f.ldf) | ||||||||||||
optimizer = Optim.LBFGS() | ||||||||||||
return _mle_optimize(model, init_vals, optimizer, options; kwargs...) | ||||||||||||
|
@@ -57,8 +57,8 @@ function Optim.optimize( | |||||||||||
options::Optim.Options=Optim.Options(); | ||||||||||||
kwargs..., | ||||||||||||
) | ||||||||||||
ctx = Optimisation.OptimizationContext(DynamicPPL.LikelihoodContext()) | ||||||||||||
f = Optimisation.OptimLogDensity(model, ctx) | ||||||||||||
vi = DynamicPPL.setaccs!!(VarInfo(model), (DynamicPPL.LogLikelihoodAccumulator(),)) | ||||||||||||
f = Optimisation.OptimLogDensity(model, vi) | ||||||||||||
init_vals = DynamicPPL.getparams(f.ldf) | ||||||||||||
return _mle_optimize(model, init_vals, optimizer, options; kwargs...) | ||||||||||||
end | ||||||||||||
|
@@ -74,8 +74,9 @@ function Optim.optimize( | |||||||||||
end | ||||||||||||
|
||||||||||||
function _mle_optimize(model::DynamicPPL.Model, args...; kwargs...) | ||||||||||||
ctx = Optimisation.OptimizationContext(DynamicPPL.LikelihoodContext()) | ||||||||||||
return _optimize(Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) | ||||||||||||
vi = DynamicPPL.setaccs!!(VarInfo(model), (DynamicPPL.LogLikelihoodAccumulator(),)) | ||||||||||||
f = Optimisation.OptimLogDensity(model, vi) | ||||||||||||
return _optimize(f, args...; kwargs...) | ||||||||||||
end | ||||||||||||
|
||||||||||||
""" | ||||||||||||
|
@@ -104,8 +105,8 @@ function Optim.optimize( | |||||||||||
options::Optim.Options=Optim.Options(); | ||||||||||||
kwargs..., | ||||||||||||
) | ||||||||||||
ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext()) | ||||||||||||
f = Optimisation.OptimLogDensity(model, ctx) | ||||||||||||
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) | ||||||||||||
f = Optimisation.OptimLogDensity(model, vi) | ||||||||||||
init_vals = DynamicPPL.getparams(f.ldf) | ||||||||||||
optimizer = Optim.LBFGS() | ||||||||||||
return _map_optimize(model, init_vals, optimizer, options; kwargs...) | ||||||||||||
|
@@ -127,8 +128,8 @@ function Optim.optimize( | |||||||||||
options::Optim.Options=Optim.Options(); | ||||||||||||
kwargs..., | ||||||||||||
) | ||||||||||||
ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext()) | ||||||||||||
f = Optimisation.OptimLogDensity(model, ctx) | ||||||||||||
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. [JuliaFormatter v1.0.62] reported by reviewdog 🐶
Suggested change
|
||||||||||||
f = Optimisation.OptimLogDensity(model, vi) | ||||||||||||
init_vals = DynamicPPL.getparams(f.ldf) | ||||||||||||
return _map_optimize(model, init_vals, optimizer, options; kwargs...) | ||||||||||||
end | ||||||||||||
|
@@ -144,9 +145,11 @@ function Optim.optimize( | |||||||||||
end | ||||||||||||
|
||||||||||||
function _map_optimize(model::DynamicPPL.Model, args...; kwargs...) | ||||||||||||
ctx = Optimisation.OptimizationContext(DynamicPPL.DefaultContext()) | ||||||||||||
return _optimize(Optimisation.OptimLogDensity(model, ctx), args...; kwargs...) | ||||||||||||
vi = DynamicPPL.setaccs!!(VarInfo(model), (LogPriorWithoutJacobianAccumulator(), DynamicPPL.LogLikelihoodAccumulator(),)) | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. [JuliaFormatter v1.0.62] reported by reviewdog 🐶
Suggested change
|
||||||||||||
f = Optimisation.OptimLogDensity(model, vi) | ||||||||||||
return _optimize(f, args...; kwargs...) | ||||||||||||
end | ||||||||||||
|
||||||||||||
""" | ||||||||||||
_optimize(f::OptimLogDensity, optimizer=Optim.LBFGS(), args...; kwargs...) | ||||||||||||
|
||||||||||||
|
@@ -166,7 +169,7 @@ function _optimize( | |||||||||||
# whether initialisation is really necessary at all | ||||||||||||
vi = DynamicPPL.unflatten(f.ldf.varinfo, init_vals) | ||||||||||||
vi = DynamicPPL.link(vi, f.ldf.model) | ||||||||||||
f = Optimisation.OptimLogDensity(f.ldf.model, vi, f.ldf.context; adtype=f.ldf.adtype) | ||||||||||||
f = Optimisation.OptimLogDensity(f.ldf.model, vi; adtype=f.ldf.adtype) | ||||||||||||
init_vals = DynamicPPL.getparams(f.ldf) | ||||||||||||
|
||||||||||||
# Optimize! | ||||||||||||
|
@@ -183,9 +186,7 @@ function _optimize( | |||||||||||
# Get the optimum in unconstrained space. `getparams` does the invlinking. | ||||||||||||
vi = f.ldf.varinfo | ||||||||||||
vi_optimum = DynamicPPL.unflatten(vi, M.minimizer) | ||||||||||||
logdensity_optimum = Optimisation.OptimLogDensity( | ||||||||||||
f.ldf.model, vi_optimum, f.ldf.context | ||||||||||||
) | ||||||||||||
logdensity_optimum = Optimisation.OptimLogDensity(f.ldf.model, vi_optimum; adtype=f.ldf.adtype) | ||||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. [JuliaFormatter v1.0.62] reported by reviewdog 🐶
Suggested change
|
||||||||||||
vns_vals_iter = Turing.Inference.getparams(f.ldf.model, vi_optimum) | ||||||||||||
varnames = map(Symbol ∘ first, vns_vals_iter) | ||||||||||||
vals = map(last, vns_vals_iter) | ||||||||||||
|
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
|
@@ -22,8 +22,6 @@ using DynamicPPL: | |||||
SampleFromPrior, | ||||||
SampleFromUniform, | ||||||
DefaultContext, | ||||||
PriorContext, | ||||||
LikelihoodContext, | ||||||
set_flag!, | ||||||
unset_flag! | ||||||
using Distributions, Libtask, Bijectors | ||||||
|
@@ -75,7 +73,6 @@ export InferenceAlgorithm, | |||||
RepeatSampler, | ||||||
Prior, | ||||||
assume, | ||||||
observe, | ||||||
predict, | ||||||
externalsampler | ||||||
|
||||||
|
@@ -182,12 +179,10 @@ function AbstractMCMC.step( | |||||
state=nothing; | ||||||
kwargs..., | ||||||
) | ||||||
vi = VarInfo() | ||||||
vi = DynamicPPL.setaccs!!(vi, (DynamicPPL.LogPriorAccumulator(),)) | ||||||
vi = last( | ||||||
DynamicPPL.evaluate!!( | ||||||
model, | ||||||
VarInfo(), | ||||||
SamplingContext(rng, DynamicPPL.SampleFromPrior(), DynamicPPL.PriorContext()), | ||||||
), | ||||||
DynamicPPL.evaluate!!(model, vi, SamplingContext(rng, DynamicPPL.SampleFromPrior())), | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. [JuliaFormatter v1.0.62] reported by reviewdog 🐶
Suggested change
|
||||||
) | ||||||
return vi, nothing | ||||||
end | ||||||
|
Original file line number | Diff line number | Diff line change | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
|
@@ -49,7 +49,7 @@ function AbstractMCMC.step( | |||||||||
rng, | ||||||||||
EllipticalSliceSampling.ESSModel( | ||||||||||
ESSPrior(model, spl, vi), | ||||||||||
DynamicPPL.LogDensityFunction( | ||||||||||
DynamicPPL.LogDensityFunction{:LogLikelihood}( | ||||||||||
model, vi, DynamicPPL.SamplingContext(spl, DynamicPPL.DefaultContext()) | ||||||||||
), | ||||||||||
), | ||||||||||
|
@@ -59,7 +59,7 @@ function AbstractMCMC.step( | |||||||||
|
||||||||||
# update sample and log-likelihood | ||||||||||
vi = DynamicPPL.unflatten(vi, sample) | ||||||||||
vi = setlogp!!(vi, state.loglikelihood) | ||||||||||
vi = setloglikelihood!!(vi, state.loglikelihood) | ||||||||||
|
||||||||||
return Transition(model, vi), vi | ||||||||||
end | ||||||||||
|
@@ -108,20 +108,12 @@ end | |||||||||
# Mean of prior distribution | ||||||||||
Distributions.mean(p::ESSPrior) = p.μ | ||||||||||
|
||||||||||
# Evaluate log-likelihood of proposals | ||||||||||
const ESSLogLikelihood{M<:Model,S<:Sampler{<:ESS},V<:AbstractVarInfo} = | ||||||||||
DynamicPPL.LogDensityFunction{M,V,<:DynamicPPL.SamplingContext{<:S},AD} where {AD} | ||||||||||
|
||||||||||
(ℓ::ESSLogLikelihood)(f::AbstractVector) = LogDensityProblems.logdensity(ℓ, f) | ||||||||||
|
||||||||||
function DynamicPPL.tilde_assume( | ||||||||||
rng::Random.AbstractRNG, ::DefaultContext, ::Sampler{<:ESS}, right, vn, vi | ||||||||||
rng::Random.AbstractRNG, ctx::DefaultContext, ::Sampler{<:ESS}, right, vn, vi | ||||||||||
) | ||||||||||
return DynamicPPL.tilde_assume( | ||||||||||
rng, LikelihoodContext(), SampleFromPrior(), right, vn, vi | ||||||||||
) | ||||||||||
return DynamicPPL.tilde_assume(rng, ctx, SampleFromPrior(), right, vn, vi) | ||||||||||
end | ||||||||||
|
||||||||||
function DynamicPPL.tilde_observe(ctx::DefaultContext, ::Sampler{<:ESS}, right, left, vi) | ||||||||||
return DynamicPPL.tilde_observe(ctx, SampleFromPrior(), right, left, vi) | ||||||||||
function DynamicPPL.tilde_observe!!(ctx::DefaultContext, ::Sampler{<:ESS}, right, left, vn, vi) | ||||||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. [JuliaFormatter v1.0.62] reported by reviewdog 🐶
Suggested change
|
||||||||||
return DynamicPPL.tilde_observe!!(ctx, SampleFromPrior(), right, left, vn, vi) | ||||||||||
end |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
[JuliaFormatter v1.0.62] reported by reviewdog 🐶