Skip to content

UUPharmacometrics/xpose

Folders and files

NameName
Last commit message
Last commit date

Latest commit

d6d194d · Jan 7, 2025
Feb 25, 2023
Jun 2, 2024
May 10, 2020
Feb 25, 2023
Jan 20, 2019
Jan 29, 2024
Jun 29, 2021
Nov 7, 2024
Jan 28, 2024
Jun 28, 2021
May 5, 2017
Jun 29, 2021
Jan 7, 2025
Jan 20, 2019
Oct 21, 2022
Jun 2, 2024
Nov 7, 2022
Nov 7, 2022
Jun 29, 2021
Jun 28, 2021
Jan 7, 2025

Repository files navigation

xpose

R-CMD-check cran_version Codecov test coverage downloads

Overview

xpose was designed as a ggplot2-based alternative to xpose4. xpose aims to reduce the post processing burden and improve diagnostics commonly associated the development of non-linear mixed effect models.

Installation

# Install the lastest release from the CRAN
install.packages('xpose')

# Or install the development version from GitHub
# install.packages('devtools')
devtools::install_github('UUPharmacometrics/xpose')

Getting started

Load xpose

library(xpose)

Import run output

xpdb <- xpose_data(runno = '001')

Glance at the data object

xpdb
run001.lst overview: 
 - Software: nonmem 7.3.0 
 - Attached files (memory usage 1.4 Mb): 
   + obs tabs: $prob no.1: catab001.csv, cotab001, patab001, sdtab001 
   + sim tabs: $prob no.2: simtab001.zip 
   + output files: run001.cor, run001.cov, run001.ext, run001.grd, run001.phi, run001.shk 
   + special: <none> 
 - gg_theme: theme_readable 
 - xp_theme: theme_xp_default 
 - Options: dir = data, quiet = TRUE, manual_import = NULL

Model summary

summary(xpdb, problem = 1)
Summary for problem no. 0 [Global information] 
 - Software                      @software   : nonmem
 - Software version              @version    : 7.3.0
 - Run directory                 @dir        : data
 - Run file                      @file       : run001.lst
 - Run number                    @run        : run001
 - Reference model               @ref        : 000
 - Run description               @descr      : NONMEM PK example for xpose
 - Run start time                @timestart  : Mon Oct 16 13:34:28 CEST 2017
 - Run stop time                 @timestop   : Mon Oct 16 13:34:35 CEST 2017

Summary for problem no. 1 [Parameter estimation] 
 - Input data                    @data       : ../../mx19_2.csv
 - Number of individuals         @nind       : 74
 - Number of observations        @nobs       : 476
 - ADVAN                         @subroutine : 2
 - Estimation method             @method     : foce-i
 - Termination message           @term       : MINIMIZATION SUCCESSFUL
 - Estimation runtime            @runtime    : 00:00:02
 - Objective function value      @ofv        : -1403.905
 - Number of significant digits  @nsig       : 3.3
 - Covariance step runtime       @covtime    : 00:00:03
 - Condition number              @condn      : 21.5
 - Eta shrinkage                 @etashk     : 9.3 [1], 28.7 [2], 23.7 [3]
 - Epsilon shrinkage             @epsshk     : 14.9 [1]
 - Run warnings                  @warnings   : (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.

Summary for problem no. 2 [Model simulations] 
 - Input data                    @data       : ../../mx19_2.csv
 - Number of individuals         @nind       : 74
 - Number of observations        @nobs       : 476
 - Estimation method             @method     : sim
 - Number of simulations         @nsim       : 20
 - Simulation seed               @simseed    : 221287
 - Run warnings                  @warnings   : (WARNING 2) NM-TRAN INFERS THAT THE DATA ARE POPULATION.
                                               (WARNING 22) WITH $MSFI AND "SUBPROBS", "TRUE=FINAL" ...

Generate diagnostics

Standard goodness-of-fit plots

dv_vs_ipred(xpdb)

Individual plots

ind_plots(xpdb, page = 1)

Visual predictive checks

xpdb %>% 
  vpc_data(stratify = 'SEX', opt = vpc_opt(n_bins = 7, lloq = 0.1)) %>% 
  vpc()

Distribution plots

eta_distrib(xpdb, labeller = 'label_value')

Minimization diagnostics

prm_vs_iteration(xpdb, labeller = 'label_value')

Recommended reading

The xpose website contains several useful articles to make full use of xpose

When working with xpose, a working knowledge of ggplot2 is recommended. Help for ggplot2 can be found in:

Contribute

Please note that the xpose project is released with a Contributor Code of Conduct and Contributing Guidelines. By contributing to this project, you agree to abide these.