A minimalist machine learning wrapper for lazy/skilled devs who want to skip the boilerplate. Built as a clean backdoor to
scikit-learn
.
import regressionmadesimple as rms
# Load dataset
df = rms.Preworks.readcsv("./your_data.csv")
# Train a linear regression model
model = rms.Linear(dataset=df, colX="feature", colY="target")
# Predict new values
predicted = model.predict([[5.2], [3.3]])
# Plot prediction vs. test
model.plot_predict([[5.2], [3.3]], predicted).show()
- 🧠 Wraps
sklearn
's most-used regression model(s) in a friendly API - 📊 Built-in Plotly visualizations -- planned later support for matplotlib (? on this)
- 🔬 Designed for quick prototyping and educational use
- 🧰 Utility functions via
preworks
:readcsv(path)
— load CSVcreate_random_dataset(...)
— create random datasets (for demos)
- One-liner regression setup
.summary()
and.plot()
for quick insight- Global config system:
rms.options
- Accepts pre-split data (
X_train
,y_train
, etc.) - Easily extendable — logistic, trees, etc. coming soon
- MIT Licensed
https://unknownuserfrommars.github.io/regressionmadesimple/
PS: Changelog also can be accessed from there
pip install regressionmadesimple
Or install the dev version:
git clone https://github.com/Unknownuserfrommars/regressionmadesimple.git
cd regressionmadesimple
pip install -e .
regressionmadesimple/
├── __init__.py
├── base_class.py
├── linear.py
├── logistic.py # (soon)
├── tree.py # (soon)
├── utils_preworks.py
Coming soon under a /tests
folder using pytest
Made with ❤️ by Unknownuserfrommars :)
Logistic()
andDecisionTree()
models.summary()
for all models- Export/save models
- Visual explainability (feature importance, SHAP)