Skip to content

Unknownuserfrommars/regressionmadesimple

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RegressionMadeSimple (RMS)

PyPI Downloads License Python Version

A minimalist machine learning wrapper for lazy/skilled devs who want to skip the boilerplate. Built as a clean backdoor to scikit-learn.


🚀 Quickstart

import regressionmadesimple as rms

# Load dataset
df = rms.Preworks.readcsv("./your_data.csv")

# Train a linear regression model
model = rms.Linear(dataset=df, colX="feature", colY="target")

# Predict new values
predicted = model.predict([[5.2], [3.3]])

# Plot prediction vs. test
model.plot_predict([[5.2], [3.3]], predicted).show()

📦 Features

  • 🧠 Wraps sklearn's most-used regression model(s) in a friendly API
  • 📊 Built-in Plotly visualizations -- planned later support for matplotlib (? on this)
  • 🔬 Designed for quick prototyping and educational use
  • 🧰 Utility functions via preworks:
    • readcsv(path) — load CSV
    • create_random_dataset(...) — create random datasets (for demos)
  • One-liner regression setup
  • .summary() and .plot() for quick insight
  • Global config system: rms.options
  • Accepts pre-split data (X_train, y_train, etc.)
  • Easily extendable — logistic, trees, etc. coming soon
  • MIT Licensed

Project LINK

https://unknownuserfrommars.github.io/regressionmadesimple/

PS: Changelog also can be accessed from there


✅ Installation

pip install regressionmadesimple

Or install the dev version:

git clone https://github.com/Unknownuserfrommars/regressionmadesimple.git
cd regressionmadesimple
pip install -e .

📁 Project Structure

regressionmadesimple/
├── __init__.py
├── base_class.py
├── linear.py
├── logistic.py        # (soon)
├── tree.py            # (soon)
├── utils_preworks.py

🧪 Tests

Coming soon under a /tests folder using pytest


📜 License

MIT License


🛠 Author

Made with ❤️ by Unknownuserfrommars :)


🌌 Ideas for Future Versions

  • Logistic() and DecisionTree() models
  • .summary() for all models
  • Export/save models
  • Visual explainability (feature importance, SHAP)

⭐ Star this project if you like lazy ML.

About

A minimalist ML backdoor to sklearn. Just import `rms` and go.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages