Skip to content

Variational Open-Domain (VOD) - core methods (priority sampling, gradients)

Notifications You must be signed in to change notification settings

VodLM/vod-gradients

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Variational Open-Domain (VOD)

Core methods (priority sampling, gradients) for Variational Open-Domain QA/LM.

Warning: refactoring in progress, coming soon!

A. Monte-Carlo estimators for Categorical distributions

This package provides sampling methods to estimate the weighted mean of a function $h(\mathbf{z})$ weighted by a categorical distribution $p(\mathbf{s})$:

$$\mu = \mathbb{E}_{p(\mathbf{z})}[h(\mathbf{z})] $$

Estimating the mean via Monte Carlo consists of

  1. Sampling $K$ indices $\mathbf{z}_1, \ldots, \mathbf{z}_K$ from $p(\mathbf{z})$ with weights $\mathbf{s}_1, \ldots, \mathbf{s}_K$.
  2. Computing the weighted mean estimate: $$\hat{\mu} = \sum_{i=1}^K s_i h(\mathbf{z}_i)$$

Available samplers

This package provides three samplers:

  1. multinomial: the standard multinomial sampler (vod.multinomial_sampler).
  2. topk: a top-k sampler (vod.topk_sampler).
  3. priority: a priority sampler (vod.priority_sampler).

Benchmark

Convergence of Monte-Carlo estimators.

B. Gradient estimation

This package implements the VOD objective and its differentiable loss terms. See vod.vod_objective.

About

Variational Open-Domain (VOD) - core methods (priority sampling, gradients)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages