WizardCoder: Empowering Code Large Language Models with Evol-Instruct

🏠 Home Page

πŸ€— HF Repo β€’πŸ± Github Repo β€’ 🐦 Twitter

πŸ“ƒ [WizardLM] β€’ πŸ“ƒ [WizardCoder] β€’ πŸ“ƒ [WizardMath]

πŸ‘‹ Join our Discord

News

[2024/01/04] πŸ”₯ We released WizardCoder-33B-V1.1 trained from deepseek-coder-33b-base, the SOTA OSS Code LLM on EvalPlus Leaderboard, achieves 79.9 pass@1 on HumanEval, 73.2 pass@1 on HumanEval-Plus, 78.9 pass@1 on MBPP, and 66.9 pass@1 on MBPP-Plus.

[2024/01/04] πŸ”₯ WizardCoder-33B-V1.1 outperforms ChatGPT 3.5, Gemini Pro, and DeepSeek-Coder-33B-instruct on HumanEval and HumanEval-Plus pass@1.

[2024/01/04] πŸ”₯ WizardCoder-33B-V1.1 is comparable with ChatGPT 3.5, and surpasses Gemini Pro on MBPP and MBPP-Plus pass@1.

Model Checkpoint Paper HumanEval HumanEval+ MBPP MBPP+ License
GPT-4-Turbo (Nov 2023) - - 85.4 81.7 83.0 70.7 -
GPT-4 (May 2023) - - 88.4 76.8 - - -
GPT-3.5-Turbo (Nov 2023) - - 72.6 65.9 81.7 69.4 -
Gemini Pro - - 63.4 55.5 72.9 57.9 -
DeepSeek-Coder-33B-instruct - - 78.7 72.6 78.7 66.7 -
WizardCoder-33B-V1.1 πŸ€— HF Link πŸ“ƒ [WizardCoder] 79.9 73.2 78.9 66.9 MSFTResearch
WizardCoder-Python-34B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 73.2 64.6 73.2 59.9 Llama2
WizardCoder-15B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 59.8 52.4 -- -- OpenRAIL-M
WizardCoder-Python-13B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 64.0 -- -- -- Llama2
WizardCoder-Python-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 55.5 -- -- -- Llama2
WizardCoder-3B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 34.8 -- -- -- OpenRAIL-M
WizardCoder-1B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardCoder] 23.8 -- -- -- OpenRAIL-M
  • Our WizardMath-70B-V1.0 model slightly outperforms some closed-source LLMs on the GSM8K, including ChatGPT 3.5, Claude Instant 1 and PaLM 2 540B.
  • Our WizardMath-70B-V1.0 model achieves 81.6 pass@1 on the GSM8k Benchmarks, which is 24.8 points higher than the SOTA open-source LLM, and achieves 22.7 pass@1 on the MATH Benchmarks, which is 9.2 points higher than the SOTA open-source LLM.
Model Checkpoint Paper GSM8k MATH Online Demo License
WizardMath-70B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 81.6 22.7 Demo Llama 2
WizardMath-13B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 63.9 14.0 Demo Llama 2
WizardMath-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardMath] 54.9 10.7 Demo Llama 2
Model Checkpoint Paper MT-Bench AlpacaEval GSM8k HumanEval License
WizardLM-70B-V1.0 πŸ€— HF Link πŸ“ƒComing Soon 7.78 92.91% 77.6% 50.6 Llama 2 License
WizardLM-13B-V1.2 πŸ€— HF Link 7.06 89.17% 55.3% 36.6 Llama 2 License
WizardLM-13B-V1.1 πŸ€— HF Link 6.76 86.32% 25.0 Non-commercial
WizardLM-30B-V1.0 πŸ€— HF Link 7.01 37.8 Non-commercial
WizardLM-13B-V1.0 πŸ€— HF Link 6.35 75.31% 24.0 Non-commercial
WizardLM-7B-V1.0 πŸ€— HF Link πŸ“ƒ [WizardLM] 19.1 Non-commercial

Comparing WizardCoder-Python-34B-V1.0 with Other LLMs.

πŸ”₯ The following figure shows that our WizardCoder-Python-34B-V1.0 attains the second position in this benchmark, surpassing GPT4 (2023/03/15, 73.2 vs. 67.0), ChatGPT-3.5 (73.2 vs. 72.5) and Claude2 (73.2 vs. 71.2).

WizardCoder

Prompt Format

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"

Inference Demo Script

We provide the inference demo code here.

Note: This script supports WizardLM/WizardCoder-Python-34B/13B/7B-V1.0. If you want to inference with WizardLM/WizardCoder-15B/3B/1B-V1.0, please change the stop_tokens = ['</s>'] to stop_tokens = ['<|endoftext|>'] in the script.

Citation

Please cite the repo if you use the data, method or code in this repo.

@article{luo2023wizardcoder,
  title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
  author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
  journal={arXiv preprint arXiv:2306.08568},
  year={2023}
}
Downloads last month
267
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for WizardLMTeam/WizardCoder-Python-13B-V1.0

Finetunes
1 model
Quantizations
5 models

Spaces using WizardLMTeam/WizardCoder-Python-13B-V1.0 10

Evaluation results