Skip to content

XKMar/DailyArXiv

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

267 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Daily Papers

The project automatically fetches the latest papers from arXiv based on keywords.

The subheadings in the README file represent the search keywords.

Only the most recent articles for each keyword are retained, up to a maximum of 100 papers.

You can click the 'Watch' button to receive daily email notifications.

Last update: 2025-02-12

Time Series

Title Date Abstract Comment
Joint parameter and state estimation for regularized time-discrete multibody dynamics 2025-02-10
Show

We develop a method for offline parameter estimation of discrete multibody dynamics with regularized and frictional kinematic constraints. This setting leads to unobserved degrees of freedom, which we handle using joint state and parameter estimation. Our method finds the states and parameters as the solution to a nonlinear least squares optimization problem based on the inverse dynamics and the observation error. The solution is found using a Levenberg-Marquardt algorithm with derivatives from automatic differentiation and custom differentiation rules for the complementary conditions that appear due to dry frictional constraints. We reduce the number of method parameters to the choice of the time-step, regularization coefficients, and a parameter that controls the relative weighting of inverse dynamics and observation errors. We evaluate the method using synthetic and real measured data, focusing on performance and sensitivity to method parameters. In particular, we optimize over a 13-dimensional parameter space, including inertial, frictional, tilt, and motor parameters, using data from a real Furuta pendulum. Results show fast convergence, in the order of seconds, and good agreement for different time-series of recorded data over multiple method parameter choices. However, very stiff constraints may cause difficulties in solving the optimization problem. We conclude that our method can be very fast and has method parameters that are robust and easy to set in the tested scenarios.

49 pages, 12 figures
Diffeomorphic Temporal Alignment Nets for Time-series Joint Alignment and Averaging 2025-02-10
Show

In time-series analysis, nonlinear temporal misalignment remains a pivotal challenge that forestalls even simple averaging. Since its introduction, the Diffeomorphic Temporal Alignment Net (DTAN), which we first introduced (Weber et al., 2019) and further developed in (Weber & Freifeld, 2023), has proven itself as an effective solution for this problem (these conference papers are earlier partial versions of the current manuscript). DTAN predicts and applies diffeomorphic transformations in an input-dependent manner, thus facilitating the joint alignment (JA) and averaging of time-series ensembles in an unsupervised or a weakly-supervised manner. The inherent challenges of the weakly/unsupervised setting, particularly the risk of trivial solutions through excessive signal distortion, are mitigated using either one of two distinct strategies: 1) a regularization term for warps; 2) using the Inverse Consistency Averaging Error (ICAE). The latter is a novel, regularization-free approach which also facilitates the JA of variable-length signals. We also further extend our framework to incorporate multi-task learning (MT-DTAN), enabling simultaneous time-series alignment and classification. Additionally, we conduct a comprehensive evaluation of different backbone architectures, demonstrating their efficacy in time-series alignment tasks. Finally, we showcase the utility of our approach in enabling Principal Component Analysis (PCA) for misaligned time-series data. Extensive experiments across 128 UCR datasets validate the superiority of our approach over contemporary averaging methods, including both traditional and learning-based approaches, marking a significant advancement in the field of time-series analysis.

This ...

This manuscript covers and extends the papers: Diffeomorphic Temporal Alignment Nets (DTAN; NeruIPS 2019) and Regularization-free Diffeomorphic Temporal Alignment Nets (ICML 2023). Additional contributions: Multi-tasking DTAN, PCA-DTAN and more

Deep Reinforcement Learning based Triggering Function for Early Classifiers of Time Series 2025-02-10
Show

Early Classification of Time Series (ECTS) has been recognized as an important problem in many areas where decisions have to be taken as soon as possible, before the full data availability, while time pressure increases. Numerous ECTS approaches have been proposed, based on different triggering functions, each taking into account various pieces of information related to the incoming time series and/or the output of a classifier. Although their performances have been empirically compared in the literature, no studies have been carried out on the optimality of these triggering functions that involve man-tailored'' decision rules. Based on the same information, could there be better triggering functions? This paper presents one way to investigate this question by showing first how to translate ECTS problems into Reinforcement Learning (RL) ones, where the very same information is used in the state space. A thorough comparison of the performance obtained by handmade'' approaches and their ``RL-based'' counterparts has been carried out. A second question investigated in this paper is whether a different combination of information, defining the state space in RL systems, can achieve even better performance. Experiments show that the system we describe, called \textsc{Alert}, significantly outperforms its state-of-the-art competitors on a large number of datasets.

Calibrated Unsupervised Anomaly Detection in Multivariate Time-series using Reinforcement Learning 2025-02-10
Show

This paper investigates unsupervised anomaly detection in multivariate time-series data using reinforcement learning (RL) in the latent space of an autoencoder. A significant challenge is the limited availability of anomalous data, often leading to misclassifying anomalies as normal events, thus raising false negatives. RL can help overcome this limitation by promoting exploration and balancing exploitation during training, effectively preventing overfitting. Wavelet analysis is also utilized to enhance anomaly detection, enabling time-series data decomposition into both time and frequency domains. This approach captures anomalies at multiple resolutions, with wavelet coefficients extracted to detect both sudden and subtle shifts in the data, thereby refining the anomaly detection process. We calibrate the decision boundary by generating synthetic anomalies and embedding a supervised framework within the model. This supervised element aids the unsupervised learning process by fine-tuning the decision boundary and increasing the model's capacity to distinguish between normal and anomalous patterns effectively.

This ...

This paper has been accepted for publication and presentation at the 2025 IEEE International systems Conference (SysCon)

Automated Data Augmentation for Few-Shot Time Series Forecasting: A Reinforcement Learning Approach Guided by a Model Zoo 2025-02-10
Show

Time series forecasting, particularly in few-shot learning scenarios, is challenging due to the limited availability of high-quality training data. To address this, we present a pilot study on using reinforcement learning (RL) for time series data augmentation. Our method, ReAugment, tackles three critical questions: which parts of the training set should be augmented, how the augmentation should be performed, and what advantages RL brings to the process. Specifically, our approach maintains a forecasting model zoo, and by measuring prediction diversity across the models, we identify samples with higher probabilities for overfitting and use them as the anchor points for augmentation. Leveraging RL, our method adaptively transforms the overfit-prone samples into new data that not only enhances training set diversity but also directs the augmented data to target regions where the forecasting models are prone to overfitting. We validate the effectiveness of ReAugment across a wide range of base models, showing its advantages in both standard time series forecasting and few-shot learning tasks.

Factor Modelling for Biclustering Large-dimensional Matrix-valued Time Series 2025-02-10
Show

A novel unsupervised learning method is proposed in this paper for biclustering large-dimensional matrix-valued time series based on an entirely new latent two-way factor structure. Each block cluster is characterized by its own row and column cluster-specific factors in addition to some common matrix factors which impact on all the matrix time series. We first estimate the global loading spaces by projecting the observation matrices onto the row or column loading space corresponding to common factors. The loading spaces for cluster-specific factors are then further recovered by projecting the observation matrices onto the orthogonal complement space of the estimated global loading spaces. To identify the latent row/column clusters simultaneously for matrix-valued time series, we provide a $K$-means algorithm based on the estimated row/column factor loadings of the cluster-specific weak factors. Theoretically, we derive faster convergence rates for global loading matrices than those of the state-of-the-art methods available in the literature under mild conditions. We also propose an one-pass eigenvalue-ratio method to estimate the numbers of global and cluster-specific factors. The consistency with explicit convergence rates is also established for the estimators of the local loading matrices, the factor numbers and the latent cluster memberships. Numerical experiments with both simulated data as well as a real data example are also reported to illustrate the usefulness of our proposed method.

Structure-preserving contrastive learning for spatial time series 2025-02-10
Show

Informative representations enhance model performance and generalisability in downstream tasks. However, learning self-supervised representations for spatially characterised time series, like traffic interactions, poses challenges as it requires maintaining fine-grained similarity relations in the latent space. In this study, we incorporate two structure-preserving regularisers for the contrastive learning of spatial time series: one regulariser preserves the topology of similarities between instances, and the other preserves the graph geometry of similarities across spatial and temporal dimensions. To balance contrastive learning and structure preservation, we propose a dynamic mechanism that adaptively weighs the trade-off and stabilises training. We conduct experiments on multivariate time series classification, as well as macroscopic and microscopic traffic prediction. For all three tasks, our approach preserves the structures of similarity relations more effectively and improves state-of-the-art task performances. The proposed approach can be applied to an arbitrary encoder and is particularly beneficial for time series with spatial or geographical features. Furthermore, this study suggests that higher similarity structure preservation indicates more informative and useful representations. This may help to understand the contribution of representation learning in pattern recognition with neural networks. Our code is made openly accessible with all resulting data at https://github.com/yiru-jiao/spclt.

TL;DR...

TL;DR: Preserving certain structures of similarity relations in spatio-temporal data can improve downstream task performance via contrastive learning

Unsupervised Learning in Echo State Networks for Input Reconstruction 2025-02-10
Show

Conventional echo state networks (ESNs) require supervised learning to train the readout layer, using the desired outputs as training data. In this study, we focus on input reconstruction (IR), which refers to training the readout layer to reproduce the input time series in its output. We reformulate the learning algorithm of the ESN readout layer to perform IR using unsupervised learning (UL). By conducting theoretical analysis and numerical experiments, we demonstrate that IR in ESNs can be effectively implemented under realistic conditions without explicitly using the desired outputs as training data; in this way, UL is enabled. Furthermore, we demonstrate that applications relying on IR, such as dynamical system replication and noise filtering, can be reformulated within the UL framework. Our findings establish a theoretically sound and universally applicable IR formulation, along with its related tasks in ESNs. This work paves the way for novel predictions and highlights unresolved theoretical challenges in ESNs, particularly in the context of time-series processing methods and computational models of the brain.

33 pa...

33 pages, 7 figures, regular paper

Fundamentals of non-parametric statistical inference for integrated quantiles 2025-02-10
Show

We present a general non-parametric statistical inference theory for integrals of quantiles without assuming any specific sampling design or dependence structure. Technical considerations are accompanied by examples and discussions, including those pertaining to the bias of empirical estimators. To illustrate how the general results can be adapted to specific situations, we derive - at a stroke and under minimal conditions - consistency and asymptotic normality of the empirical tail-value-at-risk, Lorenz and Gini curves at any probability level in the case of the simple random sampling, thus facilitating a comparison of our results with what is already known in the literature. Results, notes and references concerning dependent (i.e., time series) data are also offered. As a by-product, our general results provide new and unified proofs of large-sample properties of a number of classical statistical estimators, such as trimmed means, and give additional insights into the origins of, and the reasons for, various necessary and sufficient conditions.

79 pa...

79 pages, 6 figures, 1 table

Predicting Energy Demand with Tensor Factor Models 2025-02-10
Show

Hourly consumption from multiple providers displays pronounced intra-day, intra-week, and annual seasonalities, as well as strong cross-sectional correlations. We introduce a novel approach for forecasting high-dimensional U.S. electricity demand data by accounting for multiple seasonal patterns via tensor factor models. To this end, we restructure the hourly electricity demand data into a sequence of weekly tensors. Each weekly tensor is a three-mode array whose dimensions correspond to the hours of the day, the days of the week, and the number of providers. This multi-dimensional representation enables a factor decomposition that distinguishes among the various seasonal patterns along each mode: factor loadings over the hour dimension highlight intra-day cycles, factor loadings over the day dimension capture differences across weekdays and weekends, and factor loadings over the provider dimension reveal commonalities and shared dynamics among the different entities. We rigorously compare the predictive performance of our tensor factor model against several benchmarks, including traditional vector factor models and cutting-edge functional time series methods. The results consistently demonstrate that the tensor-based approach delivers superior forecasting accuracy at different horizons and provides interpretable factors that align with domain knowledge. Beyond its empirical advantages, our framework offers a systematic way to gain insight into the underlying processes that shape electricity demand patterns. In doing so, it paves the way for more nuanced, data-driven decision-making and can be adapted to address similar challenges in other high-dimensional time series applications.

Powerformer: A Transformer with Weighted Causal Attention for Time-series Forecasting 2025-02-10
Show

Transformers have recently shown strong performance in time-series forecasting, but their all-to-all attention mechanism overlooks the (temporal) causal and often (temporally) local nature of data. We introduce Powerformer, a novel Transformer variant that replaces noncausal attention weights with causal weights that are reweighted according to a smooth heavy-tailed decay. This simple yet effective modification endows the model with an inductive bias favoring temporally local dependencies, while still allowing sufficient flexibility to learn the unique correlation structure of each dataset. Our empirical results demonstrate that Powerformer not only achieves state-of-the-art accuracy on public time-series benchmarks, but also that it offers improved interpretability of attention patterns. Our analyses show that the model's locality bias is amplified during training, demonstrating an interplay between time-series data and power-law-based attention. These findings highlight the importance of domain-specific modifications to the Transformer architecture for time-series forecasting, and they establish Powerformer as a strong, efficient, and principled baseline for future research and real-world applications.

Integrating Sequence and Image Modeling in Irregular Medical Time Series Through Self-Supervised Learning 2025-02-10
Show

Medical time series are often irregular and face significant missingness, posing challenges for data analysis and clinical decision-making. Existing methods typically adopt a single modeling perspective, either treating series data as sequences or transforming them into image representations for further classification. In this paper, we propose a joint learning framework that incorporates both sequence and image representations. We also design three self-supervised learning strategies to facilitate the fusion of sequence and image representations, capturing a more generalizable joint representation. The results indicate that our approach outperforms seven other state-of-the-art models in three representative real-world clinical datasets. We further validate our approach by simulating two major types of real-world missingness through leave-sensors-out and leave-samples-out techniques. The results demonstrate that our approach is more robust and significantly surpasses other baselines in terms of classification performance.

9 pag...

9 pages, 2 figures, AAAI2025

TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation 2025-02-10
Show

Self-supervised learning has garnered increasing attention in time series analysis for benefiting various downstream tasks and reducing reliance on labeled data. Despite its effectiveness, existing methods often struggle to comprehensively capture both long-term dynamic evolution and subtle local patterns in a unified manner. In this work, we propose TimeDART, a novel self-supervised time series pre-training framework that unifies two powerful generative paradigms to learn more transferable representations. Specifically, we first employ a causal Transformer encoder, accompanied by a patch-based embedding strategy, to model the evolving trends from left to right. Building on this global modeling, we further introduce a denoising diffusion process to capture fine-grained local patterns through forward diffusion and reverse denoising. Finally, we optimize the model in an autoregressive manner. As a result, TimeDART effectively accounts for both global and local sequence features in a coherent way. We conduct extensive experiments on public datasets for time series forecasting and classification. The experimental results demonstrate that TimeDART consistently outperforms previous compared methods, validating the effectiveness of our approach. Our code is available at https://github.com/Melmaphother/TimeDART.

22 pages, 8 figures
AdaPRL: Adaptive Pairwise Regression Learning with Uncertainty Estimation for Universal Regression Tasks 2025-02-10
Show

Current deep regression models usually learn in a point-wise way that treats each sample as an independent input, neglecting the relative ordering among different data. Consequently, the regression model could neglect the data's interrelationships, potentially resulting in suboptimal performance. Moreover, the existence of aleatoric uncertainty in the training data may drive the model to capture non-generalizable patterns, contributing to increased overfitting. To address these issues, we propose a novel adaptive pairwise learning framework for regression tasks (AdaPRL) which leverages the relative differences between data points and integrates with deep probabilistic models to quantify the uncertainty associated with the predictions. Additionally, we adapt AdaPRL for applications in multi-task learning and multivariate time series forecasting. Extensive experiments with several real-world regression datasets including recommendation systems, age prediction, time series forecasting, natural language understanding, finance, and industry datasets show that AdaPRL is compatible with different backbone networks in various tasks and achieves state-of-the-art performance on the vast majority of tasks without extra inference cost, highlighting its notable potential including enhancing prediction accuracy and ranking ability, increasing generalization capability, improving robustness to noisy data, improving resilience to reduced data, and enhancing interpretability. Experiments also show that AdaPRL can be seamlessly incorporated into recently proposed regression frameworks to gain performance improvement.

24 pages, 11 figures
Investigating Compositional Reasoning in Time Series Foundation Models 2025-02-09
Show

Large pre-trained time series foundation models (TSFMs) have demonstrated promising zero-shot performance across a wide range of domains. However, a question remains: Do TSFMs succeed solely by memorizing training patterns, or do they possess the ability to reason? While reasoning is a topic of great interest in the study of Large Language Models (LLMs), it is undefined and largely unexplored in the context of TSFMs. In this work, inspired by language modeling literature, we formally define compositional reasoning in forecasting and distinguish it from in-distribution generalization. We evaluate the reasoning and generalization capabilities of 23 popular deep learning forecasting models on multiple synthetic and real-world datasets. Additionally, through controlled studies, we systematically examine which design choices in TSFMs contribute to improved reasoning abilities. Our study yields key insights into the impact of TSFM architecture design on compositional reasoning and generalization. We find that patch-based Transformers have the best reasoning performance, closely followed by residualized MLP-based architectures, which are 97% less computationally complex in terms of FLOPs and 86% smaller in terms of the number of trainable parameters. Interestingly, in some zero-shot out-of-distribution scenarios, these models can outperform moving average and exponential smoothing statistical baselines trained on in-distribution data. Only a few design choices, such as the tokenization method, had a significant (negative) impact on Transformer model performance.

Retrieval-augmented Large Language Models for Financial Time Series Forecasting 2025-02-09
Show

Stock movement prediction, a fundamental task in financial time-series forecasting, requires identifying and retrieving critical influencing factors from vast amounts of time-series data. However, existing text-trained or numeric similarity-based retrieval methods fall short in handling complex financial analysis. To address this, we propose the first retrieval-augmented generation (RAG) framework for financial time-series forecasting, featuring three key innovations: a fine-tuned 1B parameter large language model (StockLLM) as the backbone, a novel candidate selection method leveraging LLM feedback, and a training objective that maximizes similarity between queries and historically significant sequences. This enables our retriever, FinSeer, to uncover meaningful patterns while minimizing noise in complex financial data. We also construct new datasets integrating financial indicators and historical stock prices to train FinSeer and ensure robust evaluation. Experimental results demonstrate that our RAG framework outperforms bare StockLLM and random retrieval, highlighting its effectiveness, while FinSeer surpasses existing retrieval methods, achieving an 8% higher accuracy on BIGDATA22 and retrieving more impactful sequences. This work underscores the importance of tailored retrieval models in financial forecasting and provides a novel framework for future research.

11 pages, 4 figures
Optimal starting point for time series forecasting 2025-02-09
Show

Recent advances on time series forecasting mainly focus on improving the forecasting models themselves. However, when the time series data suffer from potential structural breaks or concept drifts, the forecasting performance might be significantly reduced. In this paper, we introduce a novel approach called Optimal Starting Point Time Series Forecast (OSP-TSP) for optimal forecasting, which can be combined with existing time series forecasting models. By adjusting the sequence length via leveraging the XGBoost and LightGBM models, the proposed approach can determine the optimal starting point (OSP) of the time series and then enhance the prediction performances of the base forecasting models. To illustrate the effectiveness of the proposed approach, comprehensive empirical analysis have been conducted on the M4 dataset and other real world datasets. Empirical results indicate that predictions based on the OSP-TSP approach consistently outperform those using the complete time series dataset. Moreover, comparison results reveals that combining our approach with existing forecasting models can achieve better prediction accuracy, which also reflect the advantages of the proposed approach.

Explainable and Class-Revealing Signal Feature Extraction via Scattering Transform and Constrained Zeroth-Order Optimization 2025-02-08
Show

We propose a new method to extract discriminant and explainable features from a particular machine learning model, i.e., a combination of the scattering transform and the multiclass logistic regression. Although this model is well-known for its ability to learn various signal classes with high classification rate, it remains elusive to understand why it can generate such successful classification, mainly due to the nonlinearity of the scattering transform. In order to uncover the meaning of the scattering transform coefficients selected by the multiclass logistic regression (with the Lasso penalty), we adopt zeroth-order optimization algorithms to search an input pattern that maximizes the class probability of a class of interest given the learned model. In order to do so, it turns out that imposing sparsity and smoothness of input patterns is important. We demonstrate the effectiveness of our proposed method using a couple of synthetic time-series classification problems.

5 pag...

5 pages; 6 figures; submitted to 2025 IEEE Statistical Signal Processing Workshop

Kernel Three Pass Regression Filter 2025-02-08
Show

We forecast a single time series using a high-dimensional set of predictors. When these predictors share common underlying dynamics, an approximate latent factor model provides a powerful characterization of their co-movements Bai(2003). These latent factors succinctly summarize the data and can also be used for prediction, alleviating the curse of dimensionality in high-dimensional prediction exercises, see Stock & Watson (2002a). However, forecasting using these latent factors suffers from two potential drawbacks. First, not all pervasive factors among the set of predictors may be relevant, and using all of them can lead to inefficient forecasts. The second shortcoming is the assumption of linear dependence of predictors on the underlying factors. The first issue can be addressed by using some form of supervision, which leads to the omission of irrelevant information. One example is the three-pass regression filter proposed by Kelly & Pruitt (2015). We extend their framework to cases where the form of dependence might be nonlinear by developing a new estimator, which we refer to as the Kernel Three-Pass Regression Filter (K3PRF). This alleviates the aforementioned second shortcoming. The estimator is computationally efficient and performs well empirically. The short-term performance matches or exceeds that of established models, while the long-term performance shows significant improvement.

Flow-based Conformal Prediction for Multi-dimensional Time Series 2025-02-08
Show

Conformal prediction for time series presents two key challenges: (1) leveraging sequential correlations in features and non-conformity scores and (2) handling multi-dimensional outcomes. We propose a novel conformal prediction method to address these two key challenges by integrating Transformer and Normalizing Flow. Specifically, the Transformer encodes the historical context of time series, and normalizing flow learns the transformation from the base distribution to the distribution of non-conformity scores conditioned on the encoded historical context. This enables the construction of prediction regions by transforming samples from the base distribution using the learned conditional flow. We ensure the marginal coverage by defining the prediction regions as sets in the transformed space that correspond to a predefined probability mass in the base distribution. The model is trained end-to-end by Flow Matching, avoiding the need for computationally intensive numerical solutions of ordinary differential equations. We demonstrate that our proposed method achieves smaller prediction regions compared to the baselines while satisfying the desired coverage through comprehensive experiments using simulated and real-world time series datasets.

TOKON: TOKenization-Optimized Normalization for time series analysis with a large language model 2025-02-08
Show

While large language models have rapidly evolved towards general artificial intelligence, their versatility in analyzing time series data remains limited. To address this limitation, we propose a novel normalization technique that considers the inherent nature of tokenization. The proposed Tokenization-Optimized Normalization (TOKON) simplifies time series data by representing each element with a single token, effectively reducing the number of tokens by 2 to 3 times. Additionally, we introduce a novel prompt for time series forecasting, termed Time Series Forecasting with Care (TFSC), to further enhance forecasting performance. Experimental results demonstrate that TOKON improves root mean square error (RMSE) for multi-step forecasting by approximately 7% to 18%, depending on the dataset and prompting method. Furthermore, TFSC, when used in conjunction with TOKON, shows additional improvements in forecasting accuracy for certain datasets

Context information can be more important than reasoning for time series forecasting with a large language model 2025-02-08
Show

With the evolution of large language models (LLMs), there is growing interest in leveraging LLMs for time series tasks. In this paper, we explore the characteristics of LLMs for time series forecasting by considering various existing and proposed prompting techniques. Forecasting for both short and long time series was evaluated. Our findings indicate that no single prompting method is universally applicable. It was also observed that simply providing proper context information related to the time series, without additional reasoning prompts, can achieve performance comparable to the best-performing prompt for each case. From this observation, it is expected that providing proper context information can be more crucial than a prompt for specific reasoning in time series forecasting. Several weaknesses in prompting for time series forecasting were also identified. First, LLMs often fail to follow the procedures described by the prompt. Second, when reasoning steps involve simple algebraic calculations with several operands, LLMs often fail to calculate accurately. Third, LLMs sometimes misunderstand the semantics of prompts, resulting in incomplete responses.

Federated Learning with Reservoir State Analysis for Time Series Anomaly Detection 2025-02-08
Show

With a growing data privacy concern, federated learning has emerged as a promising framework to train machine learning models without sharing locally distributed data. In federated learning, local model training by multiple clients and model integration by a server are repeated only through model parameter sharing. Most existing federated learning methods assume training deep learning models, which are often computationally demanding. To deal with this issue, we propose federated learning methods with reservoir state analysis to seek computational efficiency and data privacy protection simultaneously. Specifically, our method relies on Mahalanobis Distance of Reservoir States (MD-RS) method targeting time series anomaly detection, which learns a distribution of reservoir states for normal inputs and detects anomalies based on a deviation from the learned distribution. Iterative updating of statistical parameters in the MD-RS enables incremental federated learning (IncFed MD-RS). We evaluate the performance of IncFed MD-RS using benchmark datasets for time series anomaly detection. The results show that IncFed MD-RS outperforms other federated learning methods with deep learning and reservoir computing models particularly when clients' data are relatively short and heterogeneous. We demonstrate that IncFed MD-RS is robust against reduced sample data compared to other methods. We also show that the computational cost of IncFed MD-RS can be reduced by subsampling from the reservoir states without performance degradation. The proposed method is beneficial especially in anomaly detection applications where computational efficiency, algorithm simplicity, and low communication cost are required.

8 pag...

8 pages, 16 figures, submitted to IJCNN 2025

Data Augmentation Policy Search for Long-Term Forecasting 2025-02-08
Show

Data augmentation serves as a popular regularization technique to combat overfitting challenges in neural networks. While automatic augmentation has demonstrated success in image classification tasks, its application to time-series problems, particularly in long-term forecasting, has received comparatively less attention. To address this gap, we introduce a time-series automatic augmentation approach named TSAA, which is both efficient and easy to implement. The solution involves tackling the associated bilevel optimization problem through a two-step process: initially training a non-augmented model for a limited number of epochs, followed by an iterative split procedure. During this iterative process, we alternate between identifying a robust augmentation policy through Bayesian optimization and refining the model while discarding suboptimal runs. Extensive evaluations on challenging univariate and multivariate forecasting benchmark problems demonstrate that TSAA consistently outperforms several robust baselines, suggesting its potential integration into prediction pipelines. Code is available at this repository: https://github.com/azencot-group/TSAA.

TMLR 2025
FlowTS: Time Series Generation via Rectified Flow 2025-02-08
Show

Diffusion-based models have significant achievements in time series generation but suffer from inefficient computation: solving high-dimensional ODEs/SDEs via iterative numerical solvers demands hundreds to thousands of drift function evaluations per sample, incurring prohibitive costs. To resolve this, we propose FlowTS, an ODE-based model that leverages rectified flow with straight-line transport in probability space. By learning geodesic paths between distributions, FlowTS achieves computational efficiency through exact linear trajectory simulation, accelerating training and generation while improving performances. We further introduce an adaptive sampling strategy inspired by the exploration-exploitation trade-off, balancing noise adaptation and precision. Notably, FlowTS enables seamless adaptation from unconditional to conditional generation without retraining, ensuring efficient real-world deployment. Also, to enhance generation authenticity, FlowTS integrates trend and seasonality decomposition, attention registers (for global context aggregation), and Rotary Position Embedding (RoPE) (for position information). For unconditional setting, extensive experiments demonstrate that FlowTS achieves state-of-the-art performance, with context FID scores of 0.019 and 0.011 on Stock and ETTh datasets (prev. best: 0.067, 0.061). For conditional setting, we have achieved superior performance in solar forecasting (MSE 213, prev. best: 375) and MuJoCo imputation tasks (MSE 7e-5, prev. best 2.7e-4). The code is available at https://github.com/UNITES-Lab/FlowTS.

Multi-Scale Conformal Prediction: A Theoretical Framework with Coverage Guarantees 2025-02-08
Show

We propose a multi-scale extension of conformal prediction, an approach that constructs prediction sets with finite-sample coverage guarantees under minimal statistical assumptions. Classic conformal prediction relies on a single notion of conformity, overlooking the multi-level structures that arise in applications such as image analysis, hierarchical data exploration, and multi-resolution time series modeling. In contrast, the proposed framework defines a distinct conformity function at each relevant scale or resolution, producing multiple conformal predictors whose prediction sets are then intersected to form the final multi-scale output. We establish theoretical results confirming that the multi-scale prediction set retains the marginal coverage guarantees of the original conformal framework and can, in fact, yield smaller or more precise sets in practice. By distributing the total miscoverage probability across scales in proportion to their informative power, the method further refines the set sizes. We also show that dependence between scales can lead to conservative coverage, ensuring that the actual coverage exceeds the nominal level. Numerical experiments in a synthetic classification setting demonstrate that multi-scale conformal prediction achieves or surpasses the nominal coverage level while generating smaller prediction sets compared to single-scale conformal methods.

ViTime: A Visual Intelligence-Based Foundation Model for Time Series Forecasting 2025-02-08
Show

Time series forecasting (TSF) possesses great practical values in various fields, including power and energy, transportation, etc. TSF methods have been studied based on knowledge from classical statistics to modern deep learning. Yet, all of them were developed based on one fundamental concept, the numerical data fitting. Thus, the models developed have been long known for being problem-specific and lacking application generalizability. A TSF foundation model serving TSF tasks across different applications can reverse such an impression. The central question is then how to develop such a TSF foundation model. This paper offers a pioneering study in developing a TSF foundation model and proposes a vision intelligence-powered framework, ViTime, for the first time. In ViTime, a method synthesizing authentic time series periodic and trend patterns is developed to enrich sample pattern diversity. A deep architecture operating TSF in image metric space is designed to achieve significantly enhanced TSF generalizability. Extensive experiments demonstrate ViTime's SOTA performance across multiple settings. In zero-shot scenarios, ViTime outperforms TimesFM by 9-15%. With just 10% fine-tuning data, ViTime surpasses both foundation models and fully-supervised benchmarks trained on complete datasets, with this performance gap widening further at 100% fine-tuning. Additionally, ViTime exhibits exceptional robustness, handling missing data without imputation and outperforming TimesFM by 20-30% under various data perturbations.

Open Challenges in Time Series Anomaly Detection: An Industry Perspective 2025-02-08
Show

Current research in time-series anomaly detection is using definitions that miss critical aspects of how anomaly detection is commonly used in practice. We list several areas that are of practical relevance and that we believe are either under-investigated or missing entirely from the current discourse. Based on an investigation of systems deployed in a cloud environment, we motivate the areas of streaming algorithms, human-in-the-loop scenarios, point processes, conditional anomalies and populations analysis of time series. This paper serves as a motivation and call for action, including opportunities for theoretical and applied research, as well as for building new dataset and benchmarks.

Order selection in GARMA models for count time series: a Bayesian perspective 2025-02-07
Show

Estimation in GARMA models has traditionally been carried out under the frequentist approach. To date, Bayesian approaches for such estimation have been relatively limited. In the context of GARMA models for count time series, Bayesian estimation achieves satisfactory results in terms of point estimation. Model selection in this context often relies on the use of information criteria. Despite its prominence in the literature, the use of information criteria for model selection in GARMA models for count time series have been shown to present poor performance in simulations, especially in terms of their ability to correctly identify models, even under large sample sizes. In this study, we study the problem of order selection in GARMA models for count time series, adopting a Bayesian perspective through the application of the Reversible Jump Markov Chain Monte Carlo approach. Monte Carlo simulation studies are conducted to assess the finite sample performance of the developed ideas, including point and interval inference, sensitivity analysis, effects of burn-in and thinning, as well as the choice of related priors and hyperparameters. Two real-data applications are presented, one considering automobile production in Brazil and the other considering bus exportation in Brazil before and after the COVID-19 pandemic, showcasing the method's capabilities and further exploring its flexibility.

Towards Foundational Models for Dynamical System Reconstruction: Hierarchical Meta-Learning via Mixture of Experts 2025-02-07
Show

As foundational models reshape scientific discovery, a bottleneck persists in dynamical system reconstruction (DSR): the ability to learn across system hierarchies. Many meta-learning approaches have been applied successfully to single systems, but falter when confronted with sparse, loosely related datasets requiring multiple hierarchies to be learned. Mixture of Experts (MoE) offers a natural paradigm to address these challenges. Despite their potential, we demonstrate that naive MoEs are inadequate for the nuanced demands of hierarchical DSR, largely due to their gradient descent-based gating update mechanism which leads to slow updates and conflicted routing during training. To overcome this limitation, we introduce MixER: Mixture of Expert Reconstructors, a novel sparse top-1 MoE layer employing a custom gating update algorithm based on $K$-means and least squares. Extensive experiments validate MixER's capabilities, demonstrating efficient training and scalability to systems of up to ten parametric ordinary differential equations. However, our layer underperforms state-of-the-art meta-learners in high-data regimes, particularly when each expert is constrained to process only a fraction of a dataset composed of highly related data points. Further analysis with synthetic and neuroscientific time series suggests that the quality of the contextual representations generated by MixER is closely linked to the presence of hierarchical structure in the data.

22 pa...

22 pages, 11 figures, 7 tables

Removing Neural Signal Artifacts with Autoencoder-Targeted Adversarial Transformers (AT-AT) 2025-02-07
Show

Electromyogenic (EMG) noise is a major contamination source in EEG data that can impede accurate analysis of brain-specific neural activity. Recent literature on EMG artifact removal has moved beyond traditional linear algorithms in favor of machine learning-based systems. However, existing deep learning-based filtration methods often have large compute footprints and prohibitively long training times. In this study, we present a new machine learning-based system for filtering EMG interference from EEG data using an autoencoder-targeted adversarial transformer (AT-AT). By leveraging the lightweight expressivity of an autoencoder to determine optimal time-series transformer application sites, our AT-AT architecture achieves a >90% model size reduction compared to published artifact removal models. The addition of adversarial training ensures that filtered signals adhere to the fundamental characteristics of EEG data. We trained AT-AT using published neural data from 67 subjects and found that the system was able to achieve comparable test performance to larger models; AT-AT posted a mean reconstructive correlation coefficient above 0.95 at an initial signal-to-noise ratio (SNR) of 2 dB and 0.70 at -7 dB SNR. Further research generalizing these results to broader sample sizes beyond these isolated test cases will be crucial; while outside the scope of this study, we also include results from a real-world deployment of AT-AT in the Appendix.

Accep...

Accepted at CNS 2025, Boston, MA, USA

Time Series Analysis of Rankings: A GARCH-Type Approach 2025-02-07
Show

Ranking data are frequently obtained nowadays but there are still scarce methods for treating these data when temporally observed. The present paper contributes to this topic by proposing and developing novel models for handling time series of ranking data. We introduce a class of time-varying ranking models inspired by the Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) models. More specifically, the temporal dynamics are defined by the conditional distribution of the current ranking given the past rankings, which are assumed to follow a Mallows distribution, which implicitly depends on a distance. Then, autoregressive and feedback components are incorporated into the model through the conditional expectation of the associated distances. Theoretical properties of our ranking GARCH models such as stationarity and ergodicity are established. The estimation of parameters is performed via maximum likelihood estimation when data is fully observed. We develop a Monte Carlo Expectation-Maximisation algorithm to deal with cases involving missing data. Monte Carlo simulation studies are presented to study the performance of the proposed estimators under both non-missing and missing data scenarios. A real data application about the weekly ranking of professional tennis players from 2015 to 2019 is presented under our proposed ranking GARCH models.

Paper...

Paper submitted for publication

Federated Learning for Anomaly Detection in Energy Consumption Data: Assessing the Vulnerability to Adversarial Attacks 2025-02-07
Show

Anomaly detection is crucial in the energy sector to identify irregular patterns indicating equipment failures, energy theft, or other issues. Machine learning techniques for anomaly detection have achieved great success, but are typically centralized, involving sharing local data with a central server which raises privacy and security concerns. Federated Learning (FL) has been gaining popularity as it enables distributed learning without sharing local data. However, FL depends on neural networks, which are vulnerable to adversarial attacks that manipulate data, leading models to make erroneous predictions. While adversarial attacks have been explored in the image domain, they remain largely unexplored in time series problems, especially in the energy domain. Moreover, the effect of adversarial attacks in the FL setting is also mostly unknown. This paper assesses the vulnerability of FL-based anomaly detection in energy data to adversarial attacks. Specifically, two state-of-the-art models, Long Short Term Memory (LSTM) and Transformers, are used to detect anomalies in an FL setting, and two white-box attack methods, Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), are employed to perturb the data. The results show that FL is more sensitive to PGD attacks than to FGSM attacks, attributed to PGD's iterative nature, resulting in an accuracy drop of over 10% even with naive, weaker attacks. Moreover, FL is more affected by these attacks than centralized learning, highlighting the need for defense mechanisms in FL.

12th ...

12th IEEE Conference on Technologies for Sustainability

Analog and Multi-modal Manufacturing Datasets Acquired on the Future Factories Platform V2 2025-02-07
Show

This paper presents two industry-grade datasets captured during an 8-hour continuous operation of the manufacturing assembly line at the Future Factories Lab, University of South Carolina, on 08/13/2024. The datasets adhere to industry standards, covering communication protocols, actuators, control mechanisms, transducers, sensors, and cameras. Data collection utilized both integrated and external sensors throughout the laboratory, including sensors embedded within the actuators and externally installed devices. Additionally, high-performance cameras captured key aspects of the operation. In a prior experiment [1], a 30-hour continuous run was conducted, during which all anomalies were documented. Maintenance procedures were subsequently implemented to reduce potential errors and operational disruptions. The two datasets include: (1) a time-series analog dataset, and (2) a multi-modal time-series dataset containing synchronized system data and images. These datasets aim to support future research in advancing manufacturing processes by providing a platform for testing novel algorithms without the need to recreate physical manufacturing environments. Moreover, the datasets are open-source and designed to facilitate the training of artificial intelligence models, streamlining research by offering comprehensive, ready-to-use resources for various applications and projects.

Conformal Prediction for Electricity Price Forecasting in the Day-Ahead and Real-Time Balancing Market 2025-02-07
Show

The integration of renewable energy into electricity markets poses significant challenges to price stability and increases the complexity of market operations. Accurate and reliable electricity price forecasting is crucial for effective market participation, where price dynamics can be significantly more challenging to predict. Probabilistic forecasting, through prediction intervals, efficiently quantifies the inherent uncertainties in electricity prices, supporting better decision-making for market participants. This study explores the enhancement of probabilistic price prediction using Conformal Prediction (CP) techniques, specifically Ensemble Batch Prediction Intervals and Sequential Predictive Conformal Inference. These methods provide precise and reliable prediction intervals, outperforming traditional models in validity metrics. We propose an ensemble approach that combines the efficiency of quantile regression models with the robust coverage properties of time series adapted CP techniques. This ensemble delivers both narrow prediction intervals and high coverage, leading to more reliable and accurate forecasts. We further evaluate the practical implications of CP techniques through a simulated trading algorithm applied to a battery storage system. The ensemble approach demonstrates improved financial returns in energy trading in both the Day-Ahead and Balancing Markets, highlighting its practical benefits for market participants.

Proactive Model Adaptation Against Concept Drift for Online Time Series Forecasting 2025-02-07
Show

Time series forecasting always faces the challenge of concept drift, where data distributions evolve over time, leading to a decline in forecast model performance. Existing solutions are based on online learning, which continually organize recent time series observations as new training samples and update model parameters according to the forecasting feedback on recent data. However, they overlook a critical issue: obtaining ground-truth future values of each sample should be delayed until after the forecast horizon. This delay creates a temporal gap between the training samples and the test sample. Our empirical analysis reveals that the gap can introduce concept drift, causing forecast models to adapt to outdated concepts. In this paper, we present Proceed, a novel proactive model adaptation framework for online time series forecasting. Proceed first estimates the concept drift between the recently used training samples and the current test sample. It then employs an adaptation generator to efficiently translate the estimated drift into parameter adjustments, proactively adapting the model to the test sample. To enhance the generalization capability of the framework, Proceed is trained on synthetic diverse concept drifts. Extensive experiments on five real-world datasets across various forecast models demonstrate that Proceed brings more performance improvements than the state-of-the-art online learning methods, significantly facilitating forecast models' resilience against concept drifts. Code is available at https://github.com/SJTU-DMTai/OnlineTSF.

Accepted by KDD 2025
Forecasting density-valued functional panel data 2025-02-07
Show

We introduce a statistical method for modeling and forecasting functional panel data represented by multiple densities. Density functions are nonnegative and have a constrained integral and thus do not constitute a linear vector space. We implement a center log-ratio transformation to transform densities into unconstrained functions. These functions exhibit cross-sectional correlation and temporal dependence. Via a functional analysis of variance decomposition, we decompose the unconstrained functional panel data into a deterministic trend component and a time-varying residual component. To produce forecasts for the time-varying component, a functional time series forecasting method, based on the estimation of the long-run covariance, is implemented. By combining the forecasts of the time-varying residual component with the deterministic trend component, we obtain $h$-step-ahead forecast curves for multiple populations. Illustrated by age- and sex-specific life-table death counts in the United States, we apply our proposed method to generate forecasts of the life-table death counts for 51 states.

WAVE: Weighted Autoregressive Varing Gate for Time Series Forecasting 2025-02-07
Show

We propose a Weighted Autoregressive Varing gatE (WAVE) attention mechanism equipped with both Autoregressive (AR) and Moving-average (MA) components. It can adapt to various attention mechanisms, enhancing and decoupling their ability to capture long-range and local temporal patterns in time series data. In this paper, we first demonstrate that, for the time series forecasting (TSF) task, the previously overlooked decoder-only autoregressive Transformer model can achieve results comparable to the best baselines when appropriate tokenization and training methods are applied. Moreover, inspired by the ARMA model from statistics and recent advances in linear attention, we introduce the full ARMA structure into existing autoregressive attention mechanisms. By using an indirect MA weight generation method, we incorporate the MA term while maintaining the time complexity and parameter size of the underlying efficient attention models. We further explore how indirect parameter generation can produce implicit MA weights that align with the modeling requirements for local temporal impacts. Experimental results show that WAVE attention that incorporates the ARMA structure consistently improves the performance of various AR attentions on TSF tasks, achieving state-of-the-art results.

The $α$-Alternator: Dynamic Adaptation To Varying Noise Levels In Sequences Using The Vendi Score For Improved Robustness and Performance 2025-02-07
Show

Current state-of-the-art dynamical models, such as Mamba, assume the same level of noisiness for all elements of a given sequence, which limits their performance on noisy temporal data. In this paper, we introduce the $\alpha$-Alternator, a novel generative model for time-dependent data that dynamically adapts to the complexity introduced by varying noise levels in sequences. The $\alpha$-Alternator leverages the Vendi Score (VS), a flexible similarity-based diversity metric, to adjust, at each time step $t$, the influence of the sequence element at time $t$ and the latent representation of the dynamics up to that time step on the predicted future dynamics. This influence is captured by a parameter that is learned and shared across all sequences in a given dataset. The sign of this parameter determines the direction of influence. A negative value indicates a noisy dataset, where a sequence element that increases the VS is considered noisy, and the model relies more on the latent history when processing that element. Conversely, when the parameter is positive, a sequence element that increases the VS is considered informative, and the $\alpha$-Alternator relies more on this new input than on the latent history when updating its predicted latent dynamics. The $\alpha$-Alternator is trained using a combination of observation masking and Alternator loss minimization. Masking simulates varying noise levels in sequences, enabling the model to be more robust to these fluctuations and improving its performance in trajectory prediction, imputation, and forecasting. Our experimental results demonstrate that the $\alpha$-Alternator outperforms both Alternators and state-of-the-art state-space models across neural decoding and time-series forecasting benchmarks.

The c...

The codebase will be made available upon publication. This paper is dedicated to Patrice Lumumba

CAMEF: Causal-Augmented Multi-Modality Event-Driven Financial Forecasting by Integrating Time Series Patterns and Salient Macroeconomic Announcements 2025-02-07
Show

Accurately forecasting the impact of macroeconomic events is critical for investors and policymakers. Salient events like monetary policy decisions and employment reports often trigger market movements by shaping expectations of economic growth and risk, thereby establishing causal relationships between events and market behavior. Existing forecasting methods typically focus either on textual analysis or time-series modeling, but fail to capture the multi-modal nature of financial markets and the causal relationship between events and price movements. To address these gaps, we propose CAMEF (Causal-Augmented Multi-Modality Event-Driven Financial Forecasting), a multi-modality framework that effectively integrates textual and time-series data with a causal learning mechanism and an LLM-based counterfactual event augmentation technique for causal-enhanced financial forecasting. Our contributions include: (1) a multi-modal framework that captures causal relationships between policy texts and historical price data; (2) a new financial dataset with six types of macroeconomic releases from 2008 to April 2024, and high-frequency real trading data for five key U.S. financial assets; and (3) an LLM-based counterfactual event augmentation strategy. We compare CAMEF to state-of-the-art transformer-based time-series and multi-modal baselines, and perform ablation studies to validate the effectiveness of the causal learning mechanism and event types.

Partial Information Rate Decomposition 2025-02-06
Show

Partial Information Decomposition (PID) is a principled and flexible method to unveil complex high-order interactions in multi-unit network systems. Though being defined exclusively for random variables, PID is ubiquitously applied to multivariate time series taken as realizations of random processes with temporal statistical structure. Here, to overcome the incorrect depiction of high-order effects by PID schemes applied to dynamic networks, we introduce the framework of Partial Information Rate Decomposition (PIRD). PIRD is formalized applying lattice theory to decompose the information shared dynamically between a target random process and a set of source processes, implemented for Gaussian processes through a spectral expansion of information rates, and demonstrated in practice analyzing time series from large-scale climate oscillations.

MedGNN: Towards Multi-resolution Spatiotemporal Graph Learning for Medical Time Series Classification 2025-02-06
Show

Medical time series has been playing a vital role in real-world healthcare systems as valuable information in monitoring health conditions of patients. Accurate classification for medical time series, e.g., Electrocardiography (ECG) signals, can help for early detection and diagnosis. Traditional methods towards medical time series classification rely on handcrafted feature extraction and statistical methods; with the recent advancement of artificial intelligence, the machine learning and deep learning methods have become more popular. However, existing methods often fail to fully model the complex spatial dynamics under different scales, which ignore the dynamic multi-resolution spatial and temporal joint inter-dependencies. Moreover, they are less likely to consider the special baseline wander problem as well as the multi-view characteristics of medical time series, which largely hinders their prediction performance. To address these limitations, we propose a Multi-resolution Spatiotemporal Graph Learning framework, MedGNN, for medical time series classification. Specifically, we first propose to construct multi-resolution adaptive graph structures to learn dynamic multi-scale embeddings. Then, to address the baseline wander problem, we propose Difference Attention Networks to operate self-attention mechanisms on the finite difference for temporal modeling. Moreover, to learn the multi-view characteristics, we utilize the Frequency Convolution Networks to capture complementary information of medical time series from the frequency domain. In addition, we introduce the Multi-resolution Graph Transformer architecture to model the dynamic dependencies and fuse the information from different resolutions. Finally, we have conducted extensive experiments on multiple medical real-world datasets that demonstrate the superior performance of our method. Our Code is available.

Accepted by WWW 2025
IN-Flow: Instance Normalization Flow for Non-stationary Time Series Forecasting 2025-02-06
Show

Due to the non-stationarity of time series, the distribution shift problem largely hinders the performance of time series forecasting. Existing solutions either rely on using certain statistics to specify the shift, or developing specific mechanisms for certain network architectures. However, the former would fail for the unknown shift beyond simple statistics, while the latter has limited compatibility on different forecasting models. To overcome these problems, we first propose a decoupled formulation for time series forecasting, with no reliance on fixed statistics and no restriction on forecasting architectures. This formulation regards the removing-shift procedure as a special transformation between a raw distribution and a desired target distribution and separates it from the forecasting. Such a formulation is further formalized into a bi-level optimization problem, to enable the joint learning of the transformation (outer loop) and forecasting (inner loop). Moreover, the special requirements of expressiveness and bi-direction for the transformation motivate us to propose instance normalization flow (IN-Flow), a novel invertible network for time series transformation. Different from the classic "normalizing flow" models, IN-Flow does not aim for normalizing input to the prior distribution (e.g., Gaussian distribution) for generation, but creatively transforms time series distribution by stacking normalization layers and flow-based invertible networks, which is thus named "normalization" flow. Finally, we have conducted extensive experiments on both synthetic data and real-world data, which demonstrate the superiority of our method.

Accepted by KDD 2025
On the reconstruction limits of complex networks 2025-02-06
Show

Network reconstruction consists in retrieving the hidden interaction structure of a system from observations. Many reconstruction algorithms have been proposed, although less research has been devoted to describe their theoretical limitations. In this work, we adopt an information-theoretic perspective and define the reconstructability: The fraction of structural information recoverable from data. The reconstructability depends on the true data generating (TDG) model which is shown to set the reconstruction limit: any algorithm can perform, on average, at best like the TDG model. We show that the reconstructability is related to various performance measures, such as the probability of error and the Jaccard similarity. In an empirical context where the TDG model is unknown, we introduce the reconstruction index as an approximation of the reconstructability. We find that performing model selection is crucial for the validity of the reconstruction index as a proxy of the reconstructability of empirical time series and networks.

Context is Key: A Benchmark for Forecasting with Essential Textual Information 2025-02-06
Show

Forecasting is a critical task in decision-making across numerous domains. While historical numerical data provide a start, they fail to convey the complete context for reliable and accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge and constraints, which can efficiently be communicated through natural language. However, in spite of recent progress with LLM-based forecasters, their ability to effectively integrate this textual information remains an open question. To address this, we introduce "Context is Key" (CiK), a time-series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities; crucially, every task in CiK requires understanding textual context to be solved successfully. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. This benchmark aims to advance multimodal forecasting by promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/.

Prepr...

Preprint; under review. First two authors contributed equally

Making Sense of Touch: Unsupervised Shapelet Learning in Bag-of-words Sense 2025-02-06
Show

This paper introduces NN-STNE, a neural network using t-distributed stochastic neighbor embedding (t-SNE) as a hidden layer to reduce input dimensions by mapping long time-series data into shapelet membership probabilities. A Gaussian kernel-based mean square error preserves local data structure, while K-means initializes shapelet candidates due to the non-convex optimization challenge. Unlike existing methods, our approach uses t-SNE to address crowding in low-dimensional space and applies L1-norm regularization to optimize shapelet length. Evaluations on the UCR dataset and an electrical component manipulation task, like switching on, demonstrate improved clustering accuracy over state-of-the-art feature-learning methods in robotics.

A Pseudo Markov-Chain Model and Time-Elapsed Measures of Mobility from Collective Data 2025-02-06
Show

In this paper we develop a pseudo Markov-chain model to understand time-elapsed flows, over multiple intervals, from time and space aggregated collective inter-location trip data, given as a time-series. Building on the model, we develop measures of mobility that parallel those known for individual mobility data, such as the radius of gyration. We apply these measures to the NetMob 2024 Data Challenge data, and obtain interesting results that are consistent with published statistics and commuting patterns in cities. Besides building a new framework, we foresee applications of this approach to an improved understanding of human mobility in the context of environmental changes and sustainable development.

27 pages, 11 figures
Bayesian Hierarchical Copula Models with a Dirichlet-Laplace Prior 2025-02-06
Show

We discuss a Bayesian hierarchical copula model for clusters of financial time series. A similar approach has been developed in recent paper. However, the prior distributions proposed there do not always provide a proper posterior. In order to circumvent the problem, we adopt a proper global-local shrinkage prior, which is also able to account for potential dependence structures among different clusters. The performance of the proposed model is presented via simulations and a real data analysis.

On the importance of structural identifiability for machine learning with partially observed dynamical systems 2025-02-06
Show

The successful application of modern machine learning for time series classification is often hampered by limitations in quality and quantity of available training data. To overcome these limitations, available domain expert knowledge in the form of parametrised mechanistic dynamical models can be used whenever it is available and time series observations may be represented as an element from a given class of parametrised dynamical models. This makes the learning process interpretable and allows the modeller to deal with sparsely and irregularly sampled data in a natural way. However, the internal processes of a dynamical model are often only partially observed. This can lead to ambiguity regarding which particular model realization best explains a given time series observation. This problem is well-known in the literature, and a dynamical model with this issue is referred to as structurally unidentifiable. Training a classifier that incorporates knowledge about a structurally unidentifiable dynamical model can negatively influence classification performance. To address this issue, we employ structural identifiability analysis to explicitly relate parameter configurations that are associated with identical system outputs. Using the derived relations in classifier training, we demonstrate that this method significantly improves the classifier's ability to generalize to unseen data on a number of example models from the biomedical domain. This effect is especially pronounced when the number of training instances is limited. Our results demonstrate the importance of accounting for structural identifiability, a topic that has received relatively little attention from the machine learning community.

15 pages, 18 figures
Quasi maximum likelihood estimation of high-dimensional approximate dynamic matrix factor models via the EM algorithm 2025-02-06
Show

This paper considers an approximate dynamic matrix factor model that accounts for the time series nature of the data by explicitly modelling the time evolution of the factors. We study Quasi Maximum Likelihood estimation of the model parameters based on the Expectation Maximization (EM) algorithm, implemented jointly with the Kalman smoother which gives estimates of the factors. This approach allows to easily handle arbitrary patterns of missing data. We establish the consistency of the estimated loadings and factor matrices as the sample size $T$ and the matrix dimensions $p_1$ and $p_2$ diverge to infinity. The finite sample properties of the estimators are assessed through a large simulation study and an application to a financial dataset of volatility proxies.

Decision Trees That Remember: Gradient-Based Learning of Recurrent Decision Trees with Memory 2025-02-06
Show

Neural architectures such as Recurrent Neural Networks (RNNs), Transformers, and State-Space Models have shown great success in handling sequential data by learning temporal dependencies. Decision Trees (DTs), on the other hand, remain a widely used class of models for structured tabular data but are typically not designed to capture sequential patterns directly. Instead, DT-based approaches for time-series data often rely on feature engineering, such as manually incorporating lag features, which can be suboptimal for capturing complex temporal dependencies. To address this limitation, we introduce ReMeDe Trees, a novel recurrent DT architecture that integrates an internal memory mechanism, similar to RNNs, to learn long-term dependencies in sequential data. Our model learns hard, axis-aligned decision rules for both output generation and state updates, optimizing them efficiently via gradient descent. We provide a proof-of-concept study on synthetic benchmarks to demonstrate the effectiveness of our approach.

PINT: Physics-Informed Neural Time Series Models with Applications to Long-term Inference on WeatherBench 2m-Temperature Data 2025-02-06
Show

This paper introduces PINT (Physics-Informed Neural Time Series Models), a framework that integrates physical constraints into neural time series models to improve their ability to capture complex dynamics. We apply PINT to the ERA5 WeatherBench dataset, focusing on long-term forecasting of 2m-temperature data. PINT incorporates the Simple Harmonic Oscillator Equation as a physics-informed prior, embedding its periodic dynamics into RNN, LSTM, and GRU architectures. This equation's analytical solutions (sine and cosine functions) facilitate rigorous evaluation of the benefits of incorporating physics-informed constraints. By benchmarking against a linear regression baseline derived from its exact solutions, we quantify the impact of embedding physical principles in data-driven models. Unlike traditional time series models that rely on future observations, PINT is designed for practical forecasting. Using only the first 90 days of observed data, it iteratively predicts the next two years, addressing challenges posed by limited real-time updates. Experiments on the WeatherBench dataset demonstrate PINT's ability to generalize, capture periodic trends, and align with physical principles. This study highlights the potential of physics-informed neural models in bridging machine learning and interpretable climate applications. Our models and datasets are publicly available on GitHub: https://github.com/KV-Park.

The ARR2 prior: flexible predictive prior definition for Bayesian auto-regressions 2025-02-06
Show

We present the ARR2 prior, a joint prior over the auto-regressive components in Bayesian time-series models and their induced $R^2$. Compared to other priors designed for times-series models, the ARR2 prior allows for flexible and intuitive shrinkage. We derive the prior for pure auto-regressive models, and extend it to auto-regressive models with exogenous inputs, and state-space models. Through both simulations and real-world modelling exercises, we demonstrate the efficacy of the ARR2 prior in improving sparse and reliable inference, while showing greater inference quality and predictive performance than other shrinkage priors. An open-source implementation of the prior is provided.

XMTC: Explainable Early Classification of Multivariate Time Series in Reach-to-Grasp Hand Kinematics 2025-02-06
Show

Hand kinematics can be measured in Human-Computer Interaction (HCI) with the intention to predict the user's intention in a reach-to-grasp action. Using multiple hand sensors, multivariate time series data are being captured. Given a number of possible actions on a number of objects, the goal is to classify the multivariate time series data, where the class shall be predicted as early as possible. Many machine-learning methods have been developed for such classification tasks, where different approaches produce favorable solutions on different data sets. We, therefore, employ an ensemble approach that includes and weights different approaches. To provide a trustworthy classification production, we present the XMTC tool that incorporates coordinated multiple-view visualizations to analyze the predictions. Temporal accuracy plots, confusion matrix heatmaps, temporal confidence heatmaps, and partial dependence plots allow for the identification of the best trade-off between early prediction and prediction quality, the detection and analysis of challenging classification conditions, and the investigation of the prediction evolution in an overview and detail manner. We employ XMTC to real-world HCI data in multiple scenarios and show that good classification predictions can be achieved early on with our classifier as well as which conditions are easy to distinguish, which multivariate time series measurements impose challenges, and which features have most impact.

Time-VLM: Exploring Multimodal Vision-Language Models for Augmented Time Series Forecasting 2025-02-06
Show

Recent advancements in time series forecasting have explored augmenting models with text or vision modalities to improve accuracy. While text provides contextual understanding, it often lacks fine-grained temporal details. Conversely, vision captures intricate temporal patterns but lacks semantic context, limiting the complementary potential of these modalities. To address this, we propose Time-VLM, a novel multimodal framework that leverages pre-trained Vision-Language Models (VLMs) to bridge temporal, visual, and textual modalities for enhanced forecasting. Our framework comprises three key components: (1) a Retrieval-Augmented Learner, which extracts enriched temporal features through memory bank interactions; (2) a Vision-Augmented Learner, which encodes time series as informative images; and (3) a Text-Augmented Learner, which generates contextual textual descriptions. These components collaborate with frozen pre-trained VLMs to produce multimodal embeddings, which are then fused with temporal features for final prediction. Extensive experiments across diverse datasets demonstrate that Time-VLM achieves superior performance, particularly in few-shot and zero-shot scenarios, thereby establishing a new direction for multimodal time series forecasting.

19 pages
Detection, Retrieval, and Explanation Unified: A Violence Detection System Based on Knowledge Graphs and GAT 2025-02-06
Show

Recently, violence detection systems developed using unified multimodal models have achieved significant success and attracted widespread attention. However, most of these systems face two critical challenges: the lack of interpretability as black-box models and limited functionality, offering only classification or retrieval capabilities. To address these challenges, this paper proposes a novel interpretable violence detection system, termed the Three-in-One (TIO) System. The TIO system integrates knowledge graphs (KG) and graph attention networks (GAT) to provide three core functionalities: detection, retrieval, and explanation. Specifically, the system processes each video frame along with text descriptions generated by a large language model (LLM) for videos containing potential violent behavior. It employs ImageBind to generate high-dimensional embeddings for constructing a knowledge graph, uses GAT for reasoning, and applies lightweight time series modules to extract video embedding features. The final step connects a classifier and retriever for multi-functional outputs. The interpretability of KG enables the system to verify the reasoning process behind each output. Additionally, the paper introduces several lightweight methods to reduce the resource consumption of the TIO system and enhance its efficiency. Extensive experiments conducted on the XD-Violence and UCF-Crime datasets validate the effectiveness of the proposed system. A case study further reveals an intriguing phenomenon: as the number of bystanders increases, the occurrence of violent behavior tends to decrease.

This ...

This work has been submitted to the IEEE for possible publication

Random forests for binary geospatial data 2025-02-06
Show

The manuscript develops new method and theory for non-linear regression for binary dependent data using random forests. Existing implementations of random forests for binary data cannot explicitly account for data correlation common in geospatial and time-series settings. For continuous outcomes, recent work has extended random forests (RF) to RF-GLS that incorporate spatial covariance using the generalized least squares (GLS) loss. However, adoption of this idea for binary data is challenging due to the use of the Gini impurity measure in classification trees, which has no known extension to model dependence. We show that for binary data, the GLS loss is also an extension of the Gini impurity measure, as the latter is exactly equivalent to the ordinary least squares (OLS) loss. This justifies using RF-GLS for non-parametric mean function estimation for binary dependent data. We then consider the special case of generalized mixed effects models, the traditional statistical model for binary geospatial data, which models the spatial random effects as a Gaussian process (GP). We propose a novel link-inversion technique that embeds the RF-GLS estimate of the mean function from the first step within the generalized mixed effects model framework, enabling estimation of non-linear covariate effects and offering spatial predictions. We establish consistency of our method, RF-GP, for both mean function and covariate effect estimation. The theory holds for a general class of stationary absolutely regular dependent processes that includes common choices like Gaussian processes with Mat'ern or compactly supported covariances and autoregressive processes. The theory relaxes the common assumption of additive mean functions and accounts for the non-linear link. We demonstrate that RF-GP outperforms competing methods for estimation and prediction in both simulated and real-world data.

Rule-based Evolving Fuzzy System for Time Series Forecasting: New Perspectives Based on Type-2 Fuzzy Sets Measures Approach 2025-02-05
Show

Real-world data contain uncertainty and variations that can be correlated to external variables, known as randomness. An alternative cause of randomness is chaos, which can be an important component of chaotic time series. One of the existing methods to deal with this type of data is the use of the evolving Fuzzy Systems (eFSs), which have been proven to be a powerful class of models for time series forecasting, due to their autonomy to handle the data and highly complex problems in real-world applications. However, due to its working structure, type-2 fuzzy sets can outperform type-1 fuzzy sets for highly uncertain scenarios. We then propose ePL-KRLS-FSM+, an enhanced class of evolving fuzzy modeling approach that combines participatory learning (PL), a kernel recursive least squares method (KRLS), type-2 fuzzy logic and data transformation into fuzzy sets (FSs). This improvement allows to create and measure type-2 fuzzy sets for better handling uncertainties in the data, generating a model that can predict chaotic data with increased accuracy. The model is evaluated using two complex datasets: the chaotic time series Mackey-Glass delay differential equation with different degrees of chaos, and the main stock index of the Taiwan Capitalization Weighted Stock Index - TAIEX. Model performance is compared to related state-of-the-art rule-based eFS models and classical approaches and is analyzed in terms of error metrics, runtime and the number of final rules. Forecasting results show that the proposed model is competitive and performs consistently compared with type-1 models, also outperforming other forecasting methods by showing the lowest error metrics and number of final rules.

Swarm Characteristic Classification using Robust Neural Networks with Optimized Controllable Inputs 2025-02-05
Show

Having the ability to infer characteristics of autonomous agents would profoundly revolutionize defense, security, and civil applications. Our previous work was the first to demonstrate that supervised neural network time series classification (NN TSC) could rapidly predict the tactics of swarming autonomous agents in military contexts, providing intelligence to inform counter-maneuvers. However, most autonomous interactions, especially military engagements, are fraught with uncertainty, raising questions about the practicality of using a pretrained classifier. This article addresses that challenge by leveraging expected operational variations to construct a richer dataset, resulting in a more robust NN with improved inference performance in scenarios characterized by significant uncertainties. Specifically, diverse datasets are created by simulating variations in defender numbers, defender motions, and measurement noise levels. Key findings indicate that robust NNs trained on an enriched dataset exhibit enhanced classification accuracy and offer operational flexibility, such as reducing resources required and offering adherence to trajectory constraints. Furthermore, we present a new framework for optimally deploying a trained NN by the defenders. The framework involves optimizing defender trajectories that elicit adversary responses that maximize the probability of correct NN tactic classification while also satisfying operational constraints imposed on the defenders.

Federated Learning of Dynamic Bayesian Network via Continuous Optimization from Time Series Data 2025-02-05
Show

Traditionally, learning the structure of a Dynamic Bayesian Network has been centralized, requiring all data to be pooled in one location. However, in real-world scenarios, data are often distributed across multiple entities (e.g., companies, devices) that seek to collaboratively learn a Dynamic Bayesian Network while preserving data privacy and security. More importantly, due to the presence of diverse clients, the data may follow different distributions, resulting in data heterogeneity. This heterogeneity poses additional challenges for centralized approaches. In this study, we first introduce a federated learning approach for estimating the structure of a Dynamic Bayesian Network from homogeneous time series data that are horizontally distributed across different parties. We then extend this approach to heterogeneous time series data by incorporating a proximal operator as a regularization term in a personalized federated learning framework. To this end, we propose \texttt{FDBNL} and \texttt{PFDBNL}, which leverage continuous optimization, ensuring that only model parameters are exchanged during the optimization process. Experimental results on synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art techniques, particularly in scenarios with many clients and limited individual sample sizes.

34 pages
A Multi-Task Learning Approach to Linear Multivariate Forecasting 2025-02-05
Show

Accurate forecasting of multivariate time series data is important in many engineering and scientific applications. Recent state-of-the-art works ignore the inter-relations between variates, using their model on each variate independently. This raises several research questions related to proper modeling of multivariate data. In this work, we propose to view multivariate forecasting as a multi-task learning problem, facilitating the analysis of forecasting by considering the angle between task gradients and their balance. To do so, we analyze linear models to characterize the behavior of tasks. Our analysis suggests that tasks can be defined by grouping similar variates together, which we achieve via a simple clustering that depends on correlation-based similarities. Moreover, to balance tasks, we scale gradients with respect to their prediction error. Then, each task is solved with a linear model within our MTLinear framework. We evaluate our approach on challenging benchmarks in comparison to strong baselines, and we show it obtains on-par or better results on multivariate forecasting problems. The implementation is available at: https://github.com/azencot-group/MTLinear

Benchmarking Time Series Forecasting Models: From Statistical Techniques to Foundation Models in Real-World Applications 2025-02-05
Show

Time series forecasting is essential for operational intelligence in the hospitality industry, and particularly challenging in large-scale, distributed systems. This study evaluates the performance of statistical, machine learning (ML), deep learning, and foundation models in forecasting hourly sales over a 14-day horizon using real-world data from a network of thousands of restaurants across Germany. The forecasting solution includes features such as weather conditions, calendar events, and time-of-day patterns. Results demonstrate the strong performance of ML-based meta-models and highlight the emerging potential of foundation models like Chronos and TimesFM, which deliver competitive performance with minimal feature engineering, leveraging only the pre-trained model (zero-shot inference). Additionally, a hybrid PySpark-Pandas approach proves to be a robust solution for achieving horizontal scalability in large-scale deployments.

CAPE: Covariate-Adjusted Pre-Training for Epidemic Time Series Forecasting 2025-02-05
Show

Accurate forecasting of epidemic infection trajectories is crucial for safeguarding public health. However, limited data availability during emerging outbreaks and the complex interaction between environmental factors and disease dynamics present significant challenges for effective forecasting. In response, we introduce CAPE, a novel epidemic pre-training framework designed to harness extensive disease datasets from diverse regions and integrate environmental factors directly into the modeling process for more informed decision-making on downstream diseases. Based on a covariate adjustment framework, CAPE utilizes pre-training combined with hierarchical environment contrasting to identify universal patterns across diseases while estimating latent environmental influences. We have compiled a diverse collection of epidemic time series datasets and validated the effectiveness of CAPE under various evaluation scenarios, including full-shot, few-shot, zero-shot, cross-location, and cross-disease settings, where it outperforms the leading baseline by an average of 9.9% in full-shot and 14.3% in zero-shot settings. The code will be released upon acceptance.

Transformers and Their Roles as Time Series Foundation Models 2025-02-05
Show

We give a comprehensive analysis of transformers as time series foundation models, focusing on their approximation and generalization capabilities. First, we demonstrate that there exist transformers that fit an autoregressive model on input univariate time series via gradient descent. We then analyze MOIRAI, a multivariate time series foundation model capable of handling an arbitrary number of covariates. We prove that it is capable of automatically fitting autoregressive models with an arbitrary number of covariates, offering insights into its design and empirical success. For generalization, we establish bounds for pretraining when the data satisfies Dobrushin's condition. Experiments support our theoretical findings, highlighting the efficacy of transformers as time series foundation models.

34 Pages, 2 Figures
PaPaGei: Open Foundation Models for Optical Physiological Signals 2025-02-05
Show

Photoplethysmography (PPG) is the leading non-invasive technique for monitoring biosignals and cardiovascular health, with widespread adoption in both clinical settings and consumer wearable devices. While machine learning models trained on PPG signals have shown promise, they tend to be task-specific and struggle with generalization. Current research is limited by the use of single-device datasets, insufficient exploration of out-of-domain generalization, and a lack of publicly available models, which hampers reproducibility. To address these limitations, we present PaPaGei, the first open foundation model for PPG signals. The model is pre-trained on over 57,000 hours of data, comprising 20 million unlabeled PPG segments from publicly available datasets. We introduce a novel representation learning approach that leverages domain knowledge of PPG signal morphology across individuals, enabling the capture of richer representations compared to traditional contrastive learning methods. We evaluate PaPaGei against state-of-the-art time-series foundation models and self-supervised learning benchmarks across 20 tasks from 10 diverse datasets, spanning cardiovascular health, sleep disorders, pregnancy monitoring, and wellbeing assessment. Our model demonstrates superior performance, improving classification and regression metrics by 6.3% and 2.9% respectively in at least 14 tasks. Notably, PaPaGei achieves these results while being more data- and parameter-efficient, outperforming models that are 70x larger. Beyond accuracy, we examine model robustness across different skin tones, establishing a benchmark for bias evaluation in future models. PaPaGei can serve as both a feature extractor and an encoder for multimodal models, opening up new opportunities for multimodal health monitoring.

Accep...

Accepted at ICLR 2025. Improved version with new experiments and results. Code and models: https://github.com/nokia-bell-labs/papagei-foundation-model

Kolmogorov-Arnold Networks for Time Series Granger Causality Inference 2025-02-05
Show

We propose the Granger causality inference Kolmogorov-Arnold Networks (KANGCI), a novel architecture that extends the recently proposed Kolmogorov-Arnold Networks (KAN) to the domain of causal inference. By extracting base weights from KAN layers and incorporating the sparsity-inducing penalty and ridge regularization, KANGCI effectively infers the Granger causality from time series. Additionally, we propose an algorithm based on time-reversed Granger causality that automatically selects causal relationships with better inference performance from the original or time-reversed time series or integrates the results to mitigate spurious connectivities. Comprehensive experiments conducted on Lorenz-96, Gene regulatory networks, fMRI BOLD signals, VAR, and real-world EEG datasets demonstrate that the proposed model achieves competitive performance to state-of-the-art methods in inferring Granger causality from nonlinear, high-dimensional, and limited-sample time series.

General Time-series Model for Universal Knowledge Representation of Multivariate Time-Series data 2025-02-05
Show

Universal knowledge representation is a central problem for multivariate time series(MTS) foundation models and yet remains open. This paper investigates this problem from the first principle and it makes four folds of contributions. First, a new empirical finding is revealed: time series with different time granularities (or corresponding frequency resolutions) exhibit distinct joint distributions in the frequency domain. This implies a crucial aspect of learning universal knowledge, one that has been overlooked by previous studies. Second, a novel Fourier knowledge attention mechanism is proposed to enable learning time granularity-aware representations from both the temporal and frequency domains. Third, an autoregressive blank infilling pre-training framework is incorporated to time series analysis for the first time, leading to a generative tasks agnostic pre-training strategy. To this end, we develop the General Time-series Model (GTM), a unified MTS foundation model that addresses the limitation of contemporary time series models, which often require token, pre-training, or model-level customizations for downstream tasks adaption. Fourth, extensive experiments show that GTM outperforms state-of-the-art (SOTA) methods across all generative tasks, including long-term forecasting, anomaly detection, and imputation.

Ordinal Patterns Based Change Points Detection 2025-02-05
Show

The ordinal patterns of a fixed number of consecutive values in a time series is the spatial ordering of these values. Counting how often a specific ordinal pattern occurs in a time series provides important insights into the properties of the time series. In this work, we prove the asymptotic normality of the relative frequency of ordinal patterns for time series with linear increments. Moreover, we apply ordinal patterns to detect changes in the distribution of a time series.

Time-MoE: Billion-Scale Time Series Foundation Models with Mixture of Experts 2025-02-05
Show

Deep learning for time series forecasting has seen significant advancements over the past decades. However, despite the success of large-scale pre-training in language and vision domains, pre-trained time series models remain limited in scale and operate at a high cost, hindering the development of larger capable forecasting models in real-world applications. In response, we introduce Time-MoE, a scalable and unified architecture designed to pre-train larger, more capable forecasting foundation models while reducing inference costs. By leveraging a sparse mixture-of-experts (MoE) design, Time-MoE enhances computational efficiency by activating only a subset of networks for each prediction, reducing computational load while maintaining high model capacity. This allows Time-MoE to scale effectively without a corresponding increase in inference costs. Time-MoE comprises a family of decoder-only transformer models that operate in an auto-regressive manner and support flexible forecasting horizons with varying input context lengths. We pre-trained these models on our newly introduced large-scale data Time-300B, which spans over 9 domains and encompassing over 300 billion time points. For the first time, we scaled a time series foundation model up to 2.4 billion parameters, achieving significantly improved forecasting precision. Our results validate the applicability of scaling laws for training tokens and model size in the context of time series forecasting. Compared to dense models with the same number of activated parameters or equivalent computation budgets, our models consistently outperform them by large margin. These advancements position Time-MoE as a state-of-the-art solution for tackling real-world time series forecasting challenges with superior capability, efficiency, and flexibility.

Accep...

Accepted by the 13th International Conference on Learning Representations (ICLR 2025)

Time Series Anomaly Detection in the Frequency Domain with Statistical Reliability 2025-02-05
Show

Effective anomaly detection in complex systems requires identifying change points (CPs) in the frequency domain, as abnormalities often arise across multiple frequencies. This paper extends recent advancements in statistically significant CP detection, based on Selective Inference (SI), to the frequency domain. The proposed SI method quantifies the statistical significance of detected CPs in the frequency domain using $p$-values, ensuring that the detected changes reflect genuine structural shifts in the target system. We address two major technical challenges to achieve this. First, we extend the existing SI framework to the frequency domain by appropriately utilizing the properties of discrete Fourier transform (DFT). Second, we develop an SI method that provides valid $p$-values for CPs where changes occur across multiple frequencies. Experimental results demonstrate that the proposed method reliably identifies genuine CPs with strong statistical guarantees, enabling more accurate root-cause analysis in the frequency domain of complex systems.

TopoCL: Topological Contrastive Learning for Time Series 2025-02-05
Show

Universal time series representation learning is challenging but valuable in real-world applications such as classification, anomaly detection, and forecasting. Recently, contrastive learning (CL) has been actively explored to tackle time series representation. However, a key challenge is that the data augmentation process in CL can distort seasonal patterns or temporal dependencies, inevitably leading to a loss of semantic information. To address this challenge, we propose Topological Contrastive Learning for time series (TopoCL). TopoCL mitigates such information loss by incorporating persistent homology, which captures the topological characteristics of data that remain invariant under transformations. In this paper, we treat the temporal and topological properties of time series data as distinct modalities. Specifically, we compute persistent homology to construct topological features of time series data, representing them in persistence diagrams. We then design a neural network to encode these persistent diagrams. Our approach jointly optimizes CL within the time modality and time-topology correspondence, promoting a comprehensive understanding of both temporal semantics and topological properties of time series. We conduct extensive experiments on four downstream tasks-classification, anomaly detection, forecasting, and transfer learning. The results demonstrate that TopoCL achieves state-of-the-art performance.

Submi...

Submitted to TNNLS (under review)

MobiCLR: Mobility Time Series Contrastive Learning for Urban Region Representations 2025-02-05
Show

Recently, learning effective representations of urban regions has gained significant attention as a key approach to understanding urban dynamics and advancing smarter cities. Existing approaches have demonstrated the potential of leveraging mobility data to generate latent representations, providing valuable insights into the intrinsic characteristics of urban areas. However, incorporating the temporal dynamics and detailed semantics inherent in human mobility patterns remains underexplored. To address this gap, we propose a novel urban region representation learning model, Mobility Time Series Contrastive Learning for Urban Region Representations (MobiCLR), designed to capture semantically meaningful embeddings from inflow and outflow mobility patterns. MobiCLR uses contrastive learning to enhance the discriminative power of its representations, applying an instance-wise contrastive loss to capture distinct flow-specific characteristics. Additionally, we develop a regularizer to align output features with these flow-specific representations, enabling a more comprehensive understanding of mobility dynamics. To validate our model, we conduct extensive experiments in Chicago, New York, and Washington, D.C. to predict income, educational attainment, and social vulnerability. The results demonstrate that our model outperforms state-of-the-art models.

Submi...

Submitted to Information Sciences (under review)

Latent Space Energy-based Neural ODEs 2025-02-05
Show

This paper introduces novel deep dynamical models designed to represent continuous-time sequences. Our approach employs a neural emission model to generate each data point in the time series through a non-linear transformation of a latent state vector. The evolution of these latent states is implicitly defined by a neural ordinary differential equation (ODE), with the initial state drawn from an informative prior distribution parameterized by an Energy-based model (EBM). This framework is extended to disentangle dynamic states from underlying static factors of variation, represented as time-invariant variables in the latent space. We train the model using maximum likelihood estimation with Markov chain Monte Carlo (MCMC) in an end-to-end manner. Experimental results on oscillating systems, videos and real-world state sequences (MuJoCo) demonstrate that our model with the learnable energy-based prior outperforms existing counterparts, and can generalize to new dynamic parameterization, enabling long-horizon predictions.

SensorChat: Answering Qualitative and Quantitative Questions during Long-Term Multimodal Sensor Interactions 2025-02-05
Show

Natural language interaction with sensing systems is crucial for enabling all users to comprehend sensor data and its impact on their everyday lives. However, existing systems, which typically operate in a Question Answering (QA) manner, are significantly limited in terms of the duration and complexity of sensor data they can handle. In this work, we introduce SensorChat, the first end-to-end QA system designed for long-term sensor monitoring with multimodal and high-dimensional data including time series. SensorChat effectively answers both qualitative (requiring high-level reasoning) and quantitative (requiring accurate responses derived from sensor data) questions in real-world scenarios. To achieve this, SensorChat uses an innovative three-stage pipeline that includes question decomposition, sensor data query, and answer assembly. The first and third stages leverage Large Language Models (LLMs) for intuitive human interactions and to guide the sensor data query process. Unlike existing multimodal LLMs, SensorChat incorporates an explicit query stage to precisely extract factual information from long-duration sensor data. We implement SensorChat and demonstrate its capability for real-time interactions on a cloud server while also being able to run entirely on edge platforms after quantization. Comprehensive QA evaluations show that SensorChat achieves up to 26% higher answer accuracy than state-of-the-art systems on quantitative questions. Additionally, a user study with eight volunteers highlights SensorChat's effectiveness in handling qualitative and open-ended questions.

Under review
A Survey of Sample-Efficient Deep Learning for Change Detection in Remote Sensing: Tasks, Strategies, and Challenges 2025-02-05
Show

In the last decade, the rapid development of deep learning (DL) has made it possible to perform automatic, accurate, and robust Change Detection (CD) on large volumes of Remote Sensing Images (RSIs). However, despite advances in CD methods, their practical application in real-world contexts remains limited due to the diverse input data and the applicational context. For example, the collected RSIs can be time-series observations, and more informative results are required to indicate the time of change or the specific change category. Moreover, training a Deep Neural Network (DNN) requires a massive amount of training samples, whereas in many cases these samples are difficult to collect. To address these challenges, various specific CD methods have been developed considering different application scenarios and training resources. Additionally, recent advancements in image generation, self-supervision, and visual foundation models (VFMs) have opened up new approaches to address the 'data-hungry' issue of DL-based CD. The development of these methods in broader application scenarios requires further investigation and discussion. Therefore, this article summarizes the literature methods for different CD tasks and the available strategies and techniques to train and deploy DL-based CD methods in sample-limited scenarios. We expect that this survey can provide new insights and inspiration for researchers in this field to develop more effective CD methods that can be applied in a wider range of contexts.

Accep...

Accepted in IEEE GRSM

CUQDS: Conformal Uncertainty Quantification under Distribution Shift for Trajectory Prediction 2025-02-04
Show

Trajectory prediction models that can infer both finite future trajectories and their associated uncertainties of the target vehicles in an online setting (e.g., real-world application scenarios) is crucial for ensuring the safe and robust navigation and path planning of autonomous vehicle motion. However, the majority of existing trajectory prediction models have neither considered reducing the uncertainty as one objective during the training stage nor provided reliable uncertainty quantification during inference stage under potential distribution shift. Therefore, in this paper, we propose the Conformal Uncertainty Quantification under Distribution Shift framework, CUQDS, to quantify the uncertainty of the predicted trajectories of existing trajectory prediction models under potential data distribution shift, while considering improving the prediction accuracy of the models and reducing the estimated uncertainty during the training stage. Specifically, CUQDS includes 1) a learning-based Gaussian process regression module that models the output distribution of the base model (any existing trajectory prediction or time series forecasting neural networks) and reduces the estimated uncertainty by additional loss term, and 2) a statistical-based Conformal P control module to calibrate the estimated uncertainty from the Gaussian process regression module in an online setting under potential distribution shift between training and testing data.

9 pages, 2 figures
Trajectory Flow Matching with Applications to Clinical Time Series Modeling 2025-02-04
Show

Modeling stochastic and irregularly sampled time series is a challenging problem found in a wide range of applications, especially in medicine. Neural stochastic differential equations (Neural SDEs) are an attractive modeling technique for this problem, which parameterize the drift and diffusion terms of an SDE with neural networks. However, current algorithms for training Neural SDEs require backpropagation through the SDE dynamics, greatly limiting their scalability and stability. To address this, we propose Trajectory Flow Matching (TFM), which trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics. TFM leverages the flow matching technique from generative modeling to model time series. In this work we first establish necessary conditions for TFM to learn time series data. Next, we present a reparameterization trick which improves training stability. Finally, we adapt TFM to the clinical time series setting, demonstrating improved performance on three clinical time series datasets both in terms of absolute performance and uncertainty prediction.

NeurI...

NeurIPS 2024 Spotlight

SDE Matching: Scalable and Simulation-Free Training of Latent Stochastic Differential Equations 2025-02-04
Show

The Latent Stochastic Differential Equation (SDE) is a powerful tool for time series and sequence modeling. However, training Latent SDEs typically relies on adjoint sensitivity methods, which depend on simulation and backpropagation through approximate SDE solutions, which limit scalability. In this work, we propose SDE Matching, a new simulation-free method for training Latent SDEs. Inspired by modern Score- and Flow Matching algorithms for learning generative dynamics, we extend these ideas to the domain of stochastic dynamics for time series and sequence modeling, eliminating the need for costly numerical simulations. Our results demonstrate that SDE Matching achieves performance comparable to adjoint sensitivity methods while drastically reducing computational complexity.

Privacy Amplification by Structured Subsampling for Deep Differentially Private Time Series Forecasting 2025-02-04
Show

Many forms of sensitive data, such as web traffic, mobility data, or hospital occupancy, are inherently sequential. The standard method for training machine learning models while ensuring privacy for units of sensitive information, such as individual hospital visits, is differentially private stochastic gradient descent (DP-SGD). However, we observe in this work that the formal guarantees of DP-SGD are incompatible with timeseries-specific tasks like forecasting, since they rely on the privacy amplification attained by training on small, unstructured batches sampled from an unstructured dataset. In contrast, batches for forecasting are generated by (1) sampling sequentially structured time series from a dataset, (2) sampling contiguous subsequences from these series, and (3) partitioning them into context and ground-truth forecast windows. We theoretically analyze the privacy amplification attained by this structured subsampling to enable the training of forecasting models with sound and tight event- and user-level privacy guarantees. Towards more private models, we additionally prove how data augmentation amplifies privacy in self-supervised training of sequence models. Our empirical evaluation demonstrates that amplification by structured subsampling enables the training of forecasting models with strong formal privacy guarantees.

Synthetic Random Environmental Time Series Generation with Similarity Control, Preserving Original Signal's Statistical Characteristics 2025-02-04
Show

Synthetic datasets are widely used in many applications, such as missing data imputation, examining non-stationary scenarios, in simulations, training data-driven models, and analyzing system robustness. Typically, synthetic data are based on historical data obtained from the observed system. The data needs to represent a specific behavior of the system, yet be new and diverse enough so that the system is challenged with a broad range of inputs. This paper presents a method, based on discrete Fourier transform, for generating synthetic time series with similar statistical moments for any given signal. The suggested method makes it possible to control the level of similarity between the given signal and the generated synthetic signals. Proof shows analytically that this method preserves the first two statistical moments of the input signal, and its autocorrelation function. The method is compared to known methods, ARMA, GAN, and CoSMoS. A large variety of environmental datasets with different temporal resolutions, and from different domains are used, testing the generality and flexibility of the method. A Python library implementing this method is made available as open-source software.

Accep...

Accepted for publication 27 November 2024. Code available at https://github.com/Al-Ofek/stsg.git

Model Input-Output Configuration Search with Embedded Feature Selection for Sensor Time-series and Image Classification 2025-02-04
Show

Machine learning is a powerful tool for extracting valuable information and making various predictions from diverse datasets. Traditional machine learning algorithms rely on well-defined input and output variables; however, there are scenarios where the separation between the input and output variables and the underlying, associated input and output layers of the model are unknown. Feature Selection (FS) and Neural Architecture Search (NAS) have emerged as promising solutions in such scenarios. This paper proposes MICS-EFS, a Model Input-Output Configuration Search with Embedded Feature Selection. The methodology explores internal dependencies in the complete input parameter space for classification tasks involving both 1D sensor time-series and 2D image data. MICS-EFS employs a modified encoder-decoder model and the Sequential Forward Search (SFS) algorithm, combining input-output configuration search with embedded feature selection. Experimental results demonstrate the superior performance of MICS-EFS compared to other FS algorithms. Across all tested datasets, MICS-EFS delivered an average accuracy improvement of 1.5% over baseline models, with the accuracy gains ranging from 0.5% to 5.9%. Moreover, the algorithm reduced feature dimensionality to just 2-5% of the original data, significantly enhancing computational efficiency. These results highlight the potential of MICS-EFS to improve model accuracy and efficiency in various machine learning tasks. Furthermore, the proposed method has been validated in a real-world industrial application focused on machining processes, underscoring its effectiveness and practicality in addressing complex input-output challenges.

19 pa...

19 pages, 19 figures + appendix, the related software code can be found under the link: https://github.com/viharoszsolt/IDENAS

VisionTS: Visual Masked Autoencoders Are Free-Lunch Zero-Shot Time Series Forecasters 2025-02-04
Show

Foundation models have emerged as a promising approach in time series forecasting (TSF). Existing approaches either repurpose large language models (LLMs) or build large-scale time series datasets to develop TSF foundation models for universal forecasting. However, these methods face challenges due to the severe cross-domain gap or in-domain heterogeneity. This paper explores a new road to building a TSF foundation model from rich, high-quality natural images. Our key insight is that a visual masked autoencoder, pre-trained on the ImageNet dataset, can naturally be a numeric series forecaster. By reformulating TSF as an image reconstruction task, we bridge the gap between image pre-training and TSF downstream tasks. Surprisingly, without further adaptation in the time series domain, the proposed VisionTS could achieve better zero-shot forecast performance than existing TSF foundation models. With fine-tuning for one epoch, VisionTS could further improve the forecasting and achieve state-of-the-art performance in most cases. Extensive experiments reveal intrinsic similarities between images and real-world time series, suggesting that visual models may offer a "free lunch" for TSF and highlight the potential for future cross-modality research. Our code is publicly available at https://github.com/Keytoyze/VisionTS.

v3: a...

v3: add GIFT-EVAL results

Impact of Stricter Content Moderation on Parler's Users' Discourse 2025-02-04
Show

Social media platforms employ various content moderation techniques to remove harmful, offensive, and hate speech content. The moderation level varies across platforms; even over time, it can evolve in a platform. For example, Parler, a fringe social media platform popular among conservative users, was known to have the least restrictive moderation policies, claiming to have open discussion spaces for their users. However, after linking the 2021 US Capitol Riots and the activity of some groups on Parler, such as QAnon and Proud Boys, on January 12, 2021, Parler was removed from the Apple and Google App Store and suspended from Amazon Cloud hosting service. Parler would have to modify their moderation policies to return to these online stores. After a month of downtime, Parler was back online with a new set of user guidelines, which reflected stricter content moderation, especially regarding the \emph{hate speech} policy. In this paper, we studied the moderation changes performed by Parler and their effect on the toxicity of its content. We collected a large longitudinal Parler dataset with 17M parleys from 432K active users from February 2021 to January 2022, after its return to the Internet and App Store. To the best of our knowledge, this is the first study investigating the effectiveness of content moderation techniques using data-driven approaches and also the first Parler dataset after its brief hiatus. Our quasi-experimental time series analysis indicates that after the change in Parler's moderation, the severe forms of toxicity (above a threshold of 0.5) immediately decreased and sustained. In contrast, the trend did not change for less severe threats and insults (a threshold between 0.5 - 0.7). Finally, we found an increase in the factuality of the news sites being shared, as well as a decrease in the number of conspiracy or pseudoscience sources being shared.

To ap...

To appear at The Web Conference 2025 (WWW 2025), please cite accordingly

LAST SToP For Modeling Asynchronous Time Series 2025-02-04
Show

We present a novel prompt design for Large Language Models (LLMs) tailored to Asynchronous Time Series. Unlike regular time series, which assume values at evenly spaced time points, asynchronous time series consist of timestamped events occurring at irregular intervals, each described in natural language. Our approach effectively utilizes the rich natural language of event descriptions, allowing LLMs to benefit from their broad world knowledge for reasoning across different domains and tasks. This allows us to extend the scope of asynchronous time series analysis beyond forecasting to include tasks like anomaly detection and data imputation. We further introduce Stochastic Soft Prompting, a novel prompt-tuning mechanism that significantly improves model performance, outperforming existing fine-tuning methods such as QLoRA. Through extensive experiments on real world datasets, we demonstrate that our approach achieves state-of-the-art performance across different tasks and datasets.

Applying non-negative matrix factorization with covariates to multivariate time series data as a vector autoregression model 2025-02-04
Show

Non-negative matrix factorization (NMF) is a powerful technique for dimensionality reduction, but its application to time series data remains limited. This paper proposes a novel framework that integrates NMF with a vector autoregression (VAR) model to capture both latent structure and temporal dependencies in multivariate time series data. By representing the NMF coefficient matrix as a VAR model, the framework leverages the interpretability of NMF while incorporating the dynamic characteristics of time series data. This approach allows for the extraction of meaningful features and accurate predictions in time series data.

8 figures
How Deep is your Guess? A Fresh Perspective on Deep Learning for Medical Time-Series Imputation 2025-02-04
Show

We present a comprehensive analysis of deep learning approaches for Electronic Health Record (EHR) time-series imputation, examining how architectural and framework biases combine to influence model performance. Our investigation reveals varying capabilities of deep imputers in capturing complex spatiotemporal dependencies within EHRs, and that model effectiveness depends on how its combined biases align with medical time-series characteristics. Our experimental evaluation challenges common assumptions about model complexity, demonstrating that larger models do not necessarily improve performance. Rather, carefully designed architectures can better capture the complex patterns inherent in clinical data. The study highlights the need for imputation approaches that prioritise clinically meaningful data reconstruction over statistical accuracy. Our experiments show imputation performance variations of up to 20% based on preprocessing and implementation choices, emphasising the need for standardised benchmarking methodologies. Finally, we identify critical gaps between current deep imputation methods and medical requirements, highlighting the importance of integrating clinical insights to achieve more reliable imputation approaches for healthcare applications.

Beyond Random Missingness: Clinically Rethinking for Healthcare Time Series Imputation 2025-02-03
Show

This study investigates the impact of masking strategies on time series imputation models in healthcare settings. While current approaches predominantly rely on random masking for model evaluation, this practice fails to capture the structured nature of missing patterns in clinical data. Using the PhysioNet Challenge 2012 dataset, we analyse how different masking implementations affect both imputation accuracy and downstream clinical predictions across eleven imputation methods. Our results demonstrate that masking choices significantly influence model performance, while recurrent architectures show more consistent performance across strategies. Analysis of downstream mortality prediction reveals that imputation accuracy doesn't necessarily translate to optimal clinical prediction capabilities. Our findings emphasise the need for clinically-informed masking strategies that better reflect real-world missing patterns in healthcare data, suggesting current evaluation frameworks may need reconsideration for reliable clinical deployment.

Trajectory

Title Date Abstract Comment
Reward-Based Collision-Free Algorithm for Trajectory Planning of Autonomous Robots 2025-02-10
Show

This paper introduces a new mission planning algorithm for autonomous robots that enables the reward-based selection of an optimal waypoint sequence from a predefined set. The algorithm computes a feasible trajectory and corresponding control inputs for a robot to navigate between waypoints while avoiding obstacles, maximizing the total reward, and adhering to constraints on state, input and its derivatives, mission time window, and maximum distance. This also solves a generalized prize-collecting traveling salesman problem. The proposed algorithm employs a new genetic algorithm that evolves solution candidates toward the optimal solution based on a fitness function and crossover. During fitness evaluation, a penalty method enforces constraints, and the differential flatness property with clothoid curves efficiently penalizes infeasible trajectories. The Euler spiral method showed promising results for trajectory parameterization compared to minimum snap and jerk polynomials. Due to the discrete exploration space, crossover is performed using a dynamic time-warping-based method and extended convex combination with projection. A mutation step enhances exploration. Results demonstrate the algorithm's ability to find the optimal waypoint sequence, fulfill constraints, avoid infeasible waypoints, and prioritize high-reward ones. Simulations and experiments with a ground vehicle, quadrotor, and quadruped are presented, complemented by benchmarking and a time-complexity analysis.

Particle Trajectory Representation Learning with Masked Point Modeling 2025-02-09
Show

Effective self-supervised learning (SSL) techniques have been key to unlocking large datasets for representation learning. While many promising methods have been developed using online corpora and captioned photographs, their application to scientific domains, where data encodes highly specialized knowledge, remains in its early stages. We present a self-supervised masked modeling framework for 3D particle trajectory analysis in Time Projection Chambers (TPCs). These detectors produce globally sparse (<1% occupancy) but locally dense point clouds, capturing meter-scale particle trajectories at millimeter resolution. Starting with PointMAE, this work proposes volumetric tokenization to group sparse ionization points into resolution-agnostic patches, as well as an auxiliary energy infilling task to improve trajectory semantics. This approach -- which we call Point-based Liquid Argon Masked Autoencoder (PoLAr-MAE) -- achieves 99.4% track and 97.7% shower classification F-scores, matching that of supervised baselines without any labeled data. While the model learns rich particle trajectory representations, it struggles with sub-token phenomena like overlapping or short-lived particle trajectories. To support further research, we release PILArNet-M -- the largest open LArTPC dataset (1M+ events, 5.2B labeled points) -- to advance SSL in high energy physics (HEP). Project site: https://youngsm.com/polarmae/

Prepr...

Preprint. 24 pages, 15 figures. Project page at https://youngsm.com/polarmae/

WildGraph: Realistic Graph-based Trajectory Generation for Wildlife 2025-02-08
Show

Trajectory generation is an important task in movement studies; it circumvents the privacy, ethical, and technical challenges of collecting real trajectories from the target population. In particular, real trajectories in the wildlife domain are scarce as a result of ethical and environmental constraints of the collection process. In this paper, we consider the problem of generating long-horizon trajectories, akin to wildlife migration, based on a small set of real samples. We propose a hierarchical approach to learn the global movement characteristics of the real dataset and recursively refine localized regions. Our solution, WildGraph, discretizes the geographic path into a prototype network of H3 (https://www.uber.com/blog/h3/) regions and leverages a recurrent variational auto-encoder to probabilistically generate paths over the regions, based on occupancy. WildGraph successfully generates realistic months-long trajectories using a sample size as small as 60. Experiments performed on two wildlife migration datasets demonstrate that our proposed method improves the generalization of the generated trajectories in comparison to existing work while achieving superior or comparable performance in several benchmark metrics. Our code is published on the following repository: https://github.com/aliwister/wildgraph.

12 pa...

12 pages, 7 figures, SIGSPATIAL '24

Using Clarke Transform to Create a Framework on the Manifold: From Sampling via Trajectory Generation to Control 2025-02-07
Show

We present a framework based on Clarke coordinates for spatial displacement-actuated continuum robots with an arbitrary number of joints. This framework consists of three modular components, i.e., a planner, trajectory generator, and controller defined on the manifold. All components are computationally efficient, compact, and branchless, and an encoder can be used to interface existing framework components that are not based on Clarke coordinates. We derive the relationship between the kinematic constraints in the joint space and on the manifold to generate smooth trajectories on the manifold. Furthermore, we establish the connection between the displacement constraint and parallel curves. To demonstrate its effectiveness, a demonstration in simulation for a displacement-actuated continuum robot with four segments is presented.

8 pag...

8 pages, 10 figures, and 1 table

3DTrajMaster: Mastering 3D Trajectory for Multi-Entity Motion in Video Generation 2025-02-07
Show

This paper aims to manipulate multi-entity 3D motions in video generation. Previous methods on controllable video generation primarily leverage 2D control signals to manipulate object motions and have achieved remarkable synthesis results. However, 2D control signals are inherently limited in expressing the 3D nature of object motions. To overcome this problem, we introduce 3DTrajMaster, a robust controller that regulates multi-entity dynamics in 3D space, given user-desired 6DoF pose (location and rotation) sequences of entities. At the core of our approach is a plug-and-play 3D-motion grounded object injector that fuses multiple input entities with their respective 3D trajectories through a gated self-attention mechanism. In addition, we exploit an injector architecture to preserve the video diffusion prior, which is crucial for generalization ability. To mitigate video quality degradation, we introduce a domain adaptor during training and employ an annealed sampling strategy during inference. To address the lack of suitable training data, we construct a 360-Motion Dataset, which first correlates collected 3D human and animal assets with GPT-generated trajectory and then captures their motion with 12 evenly-surround cameras on diverse 3D UE platforms. Extensive experiments show that 3DTrajMaster sets a new state-of-the-art in both accuracy and generalization for controlling multi-entity 3D motions. Project page: http://fuxiao0719.github.io/projects/3dtrajmaster

ICLR ...

ICLR 2025. Project Page & Code & Data: http://fuxiao0719.github.io/projects/3dtrajmaster

On characterizing optimal learning trajectories in a class of learning problems 2025-02-06
Show

In this brief paper, we provide a mathematical framework that exploits the relationship between the maximum principle and dynamic programming for characterizing optimal learning trajectories in a class of learning problem, which is related to point estimations for modeling of high-dimensional nonlinear functions. Here, such characterization for the optimal learning trajectories is associated with the solution of an optimal control problem for a weakly-controlled gradient system with small parameters, whose time-evolution is guided by a model training dataset and its perturbed version, while the optimization problem consists of a cost functional that summarizes how to gauge the quality/performance of the estimated model parameters at a certain fixed final time w.r.t. a model validating dataset. Moreover, using a successive Galerkin approximation method, we provide an algorithmic recipe how to construct the corresponding optimal learning trajectories leading to the optimal estimated model parameters for such a class of learning problem.

5 Pag...

5 Pages (A further extension of the paper: arXiv:2412.08772)

Harmonious Group Choreography with Trajectory-Controllable Diffusion 2025-02-06
Show

Creating group choreography from music is crucial in cultural entertainment and virtual reality, with a focus on generating harmonious movements. Despite growing interest, recent approaches often struggle with two major challenges: multi-dancer collisions and single-dancer foot sliding. To address these challenges, we propose a Trajectory-Controllable Diffusion (TCDiff) framework, which leverages non-overlapping trajectories to ensure coherent and aesthetically pleasing dance movements. To mitigate collisions, we introduce a Dance-Trajectory Navigator that generates collision-free trajectories for multiple dancers, utilizing a distance-consistency loss to maintain optimal spacing. Furthermore, to reduce foot sliding, we present a footwork adaptor that adjusts trajectory displacement between frames, supported by a relative forward-kinematic loss to further reinforce the correlation between movements and trajectories. Experiments demonstrate our method's superiority.

M$^3$PC: Test-time Model Predictive Control for Pretrained Masked Trajectory Model 2025-02-06
Show

Recent work in Offline Reinforcement Learning (RL) has shown that a unified Transformer trained under a masked auto-encoding objective can effectively capture the relationships between different modalities (e.g., states, actions, rewards) within given trajectory datasets. However, this information has not been fully exploited during the inference phase, where the agent needs to generate an optimal policy instead of just reconstructing masked components from unmasked ones. Given that a pretrained trajectory model can act as both a Policy Model and a World Model with appropriate mask patterns, we propose using Model Predictive Control (MPC) at test time to leverage the model's own predictive capability to guide its action selection. Empirical results on D4RL and RoboMimic show that our inference-phase MPC significantly improves the decision-making performance of a pretrained trajectory model without any additional parameter training. Furthermore, our framework can be adapted to Offline to Online (O2O) RL and Goal Reaching RL, resulting in more substantial performance gains when an additional online interaction budget is provided, and better generalization capabilities when different task targets are specified. Code is available: https://github.com/wkh923/m3pc.

ICLR 2025
Spatiotemporal Trajectory Tracking Method for Vehicles Incorporating Lead-Lag Judgement 2025-02-06
Show

In the domain of intelligent transportation systems, especially within the context of autonomous vehicle control, the preemptive holistic collaborative system has been presented as a promising solution to bring a remarkable enhancement in traffic efficiency and a substantial reduction in the accident rate, demonstrating a great potential of development. In order to ensure this system operates as intended, accurate tracking of the spatiotemporal trajectory is of crucial significance. Moreover, minimizing the tracking error is a necessary step in this process. To this end, a novel lead-lag judgment mechanism is proposed. This mechanism precisely quantifies the longitudinal positional deviation between the vehicle and the target trajectory over time, then the deviation is corrected with a real - time acceleration compensation strategy, as a result, the accuracy and reliability of trajectory tracking are significantly enhanced. Real - vehicle experiments were conducted in a dedicated test field to validate the feasibility of this innovative approach empirically. Subsequently, the obtained tracking data was subsequent processed using the lead-lag judgment mechanism. In this step, we carefully analyzed the spatiotemporal error patterns between the vehicle and the target trajectory under different alignments and speeds. Finally, using real highway speed and alignment data, we conducted comprehensive spatiotemporal trajectory tracking simulations. Through experiments and simulations, tracking errors maintained in an acceptable range and reasonable spatiotemporal distance is given during the preemptive merging process on highway ramps. Overall, this study offers valuable insights for highway ramp emerging safety. Future work can expand on these findings.

Reduce Lap Time for Autonomous Racing with Curvature-Integrated MPCC Local Trajectory Planning Method 2025-02-06
Show

The widespread application of autonomous driving technology has significantly advanced the field of autonomous racing. Model Predictive Contouring Control (MPCC) is a highly effective local trajectory planning method for autonomous racing. However, the traditional MPCC method struggles with racetracks that have significant curvature changes, limiting the performance of the vehicle during autonomous racing. To address this issue, we propose a curvature-integrated MPCC (CiMPCC) local trajectory planning method for autonomous racing. This method optimizes the velocity of the local trajectory based on the curvature of the racetrack centerline. The specific implementation involves mapping the curvature of the racetrack centerline to a reference velocity profile, which is then incorporated into the cost function for optimizing the velocity of the local trajectory. This reference velocity profile is created by normalizing and mapping the curvature of the racetrack centerline, thereby ensuring efficient and performance-oriented local trajectory planning in racetracks with significant curvature. The proposed CiMPCC method has been experimented on a self-built 1:10 scale F1TENTH racing vehicle deployed with ROS platform. The experimental results demonstrate that the proposed method achieves outstanding results on a challenging racetrack with sharp curvature, improving the overall lap time by 11.4%-12.5% compared to other autonomous racing trajectory planning methods. Our code is available at https://github.com/zhouhengli/CiMPCC.

Anytime Planning for End-Effector Trajectory Tracking 2025-02-05
Show

End-effector trajectory tracking algorithms find joint motions that drive robot manipulators to track reference trajectories. In practical scenarios, anytime algorithms are preferred for their ability to quickly generate initial motions and continuously refine them over time. In this paper, we present an algorithmic framework that adapts common graph-based trajectory tracking algorithms to be anytime and enhances their efficiency and effectiveness. Our key insight is to identify guide paths that approximately track the reference trajectory and strategically bias sampling toward the guide paths. We demonstrate the effectiveness of the proposed framework by restructuring two existing graph-based trajectory tracking algorithms and evaluating the updated algorithms in three experiments.

Accep...

Accepted by IEEE Robotics and Automation Letters (RAL)

Partially Observed Trajectory Inference using Optimal Transport and a Dynamics Prior 2025-02-05
Show

Trajectory inference seeks to recover the temporal dynamics of a population from snapshots of its (uncoupled) temporal marginals, i.e. where observed particles are not tracked over time. Prior works addressed this challenging problem under a stochastic differential equation (SDE) model with a gradient-driven drift in the observed space, introducing a minimum entropy estimator relative to the Wiener measure and a practical grid-free mean-field Langevin (MFL) algorithm using Schr"odinger bridges. Motivated by the success of observable state space models in the traditional paired trajectory inference problem (e.g. target tracking), we extend the above framework to a class of latent SDEs in the form of observable state space models. In this setting, we use partial observations to infer trajectories in the latent space under a specified dynamics model (e.g. the constant velocity/acceleration models from target tracking). We introduce the PO-MFL algorithm to solve this latent trajectory inference problem and provide theoretical guarantees to the partially observed setting. Experiments validate the robustness of our method and the exponential convergence of the MFL dynamics, and demonstrate significant outperformance over the latent-free baseline in key scenarios.

ICLR 2025
Inverse Mixed Strategy Games with Generative Trajectory Models 2025-02-05
Show

Game-theoretic models are effective tools for modeling multi-agent interactions, especially when robots need to coordinate with humans. However, applying these models requires inferring their specifications from observed behaviors -- a challenging task known as the inverse game problem. Existing inverse game approaches often struggle to account for behavioral uncertainty and measurement noise, and leverage both offline and online data. To address these limitations, we propose an inverse game method that integrates a generative trajectory model into a differentiable mixed-strategy game framework. By representing the mixed strategy with a conditional variational autoencoder (CVAE), our method can infer high-dimensional, multi-modal behavior distributions from noisy measurements while adapting in real-time to new observations. We extensively evaluate our method in a simulated navigation benchmark, where the observations are generated by an unknown game model. Despite the model mismatch, our method can infer Nash-optimal actions comparable to those of the ground-truth model and the oracle inverse game baseline, even in the presence of uncertain agent objectives and noisy measurements.

Accep...

Accepted to ICRA 2025. 8 pages, 4 figures

Non-Asymptotic Analysis of Subspace Identification for Stochastic Systems Using Multiple Trajectories 2025-02-05
Show

This paper is concerned with the analysis of identification errors for $n$-dimensional discrete-time Linear Time-Invariant (LTI) systems with $m$ outputs and no external inputs, using Subspace Identification Methods (SIM) with finite sample data. We provide non-asymptotic high-probability upper bounds for matrices $A,C$, the Kalman filter gain $K$, and the closed loop matrix $A-KC $, based on multiple sample trajectories, and further give the first non-asymptotic high-probability upper bounds for the system poles, which cover both (marginally) stable systems and unstable systems. We show that, with high probability, the non-asymptotic estimation errors of these matrices decay at a rate of at least $ \mathcal{O}(\sqrt{1/N}) $, while the estimation error of the system poles decays at a rate of at least $ \mathcal{O}(N^{-\frac{1}{2n}}) $, where $ N $ represents the number of sample trajectories. Furthermore, we prove that SIMs become ill-conditioned when the ratio $n/m$ is large, regardless of the system parameters. Numerical experiments are conducted to validate the non-asymptotic results and the ill-conditionedness of SIM.

23 pages, 7 figures
Mojito: Motion Trajectory and Intensity Control for Video Generation 2025-02-05
Show

Recent advancements in diffusion models have shown great promise in producing high-quality video content. However, efficiently training video diffusion models capable of integrating directional guidance and controllable motion intensity remains a challenging and under-explored area. To tackle these challenges, this paper introduces Mojito, a diffusion model that incorporates both motion trajectory and intensity control for text-to-video generation. Specifically, Mojito features a Directional Motion Control (DMC) module that leverages cross-attention to efficiently direct the generated object's motion without training, alongside a Motion Intensity Modulator (MIM) that uses optical flow maps generated from videos to guide varying levels of motion intensity. Extensive experiments demonstrate Mojito's effectiveness in achieving precise trajectory and intensity control with high computational efficiency, generating motion patterns that closely match specified directions and intensities, providing realistic dynamics that align well with natural motion in real-world scenarios.

CUQDS: Conformal Uncertainty Quantification under Distribution Shift for Trajectory Prediction 2025-02-04
Show

Trajectory prediction models that can infer both finite future trajectories and their associated uncertainties of the target vehicles in an online setting (e.g., real-world application scenarios) is crucial for ensuring the safe and robust navigation and path planning of autonomous vehicle motion. However, the majority of existing trajectory prediction models have neither considered reducing the uncertainty as one objective during the training stage nor provided reliable uncertainty quantification during inference stage under potential distribution shift. Therefore, in this paper, we propose the Conformal Uncertainty Quantification under Distribution Shift framework, CUQDS, to quantify the uncertainty of the predicted trajectories of existing trajectory prediction models under potential data distribution shift, while considering improving the prediction accuracy of the models and reducing the estimated uncertainty during the training stage. Specifically, CUQDS includes 1) a learning-based Gaussian process regression module that models the output distribution of the base model (any existing trajectory prediction or time series forecasting neural networks) and reduces the estimated uncertainty by additional loss term, and 2) a statistical-based Conformal P control module to calibrate the estimated uncertainty from the Gaussian process regression module in an online setting under potential distribution shift between training and testing data.

9 pages, 2 figures
Trajectory Flow Matching with Applications to Clinical Time Series Modeling 2025-02-04
Show

Modeling stochastic and irregularly sampled time series is a challenging problem found in a wide range of applications, especially in medicine. Neural stochastic differential equations (Neural SDEs) are an attractive modeling technique for this problem, which parameterize the drift and diffusion terms of an SDE with neural networks. However, current algorithms for training Neural SDEs require backpropagation through the SDE dynamics, greatly limiting their scalability and stability. To address this, we propose Trajectory Flow Matching (TFM), which trains a Neural SDE in a simulation-free manner, bypassing backpropagation through the dynamics. TFM leverages the flow matching technique from generative modeling to model time series. In this work we first establish necessary conditions for TFM to learn time series data. Next, we present a reparameterization trick which improves training stability. Finally, we adapt TFM to the clinical time series setting, demonstrating improved performance on three clinical time series datasets both in terms of absolute performance and uncertainty prediction.

NeurI...

NeurIPS 2024 Spotlight

Unified Spatial-Temporal Edge-Enhanced Graph Networks for Pedestrian Trajectory Prediction 2025-02-04
Show

Pedestrian trajectory prediction aims to forecast future movements based on historical paths. Spatial-temporal (ST) methods often separately model spatial interactions among pedestrians and temporal dependencies of individuals. They overlook the direct impacts of interactions among different pedestrians across various time steps (i.e., high-order cross-time interactions). This limits their ability to capture ST inter-dependencies and hinders prediction performance. To address these limitations, we propose UniEdge with three major designs. Firstly, we introduce a unified ST graph data structure that simplifies high-order cross-time interactions into first-order relationships, enabling the learning of ST inter-dependencies in a single step. This avoids the information loss caused by multi-step aggregation. Secondly, traditional GNNs focus on aggregating pedestrian node features, neglecting the propagation of implicit interaction patterns encoded in edge features. We propose the Edge-to-Edge-Node-to-Node Graph Convolution (E2E-N2N-GCN), a novel dual-graph network that jointly models explicit N2N social interactions among pedestrians and implicit E2E influence propagation across these interaction patterns. Finally, to overcome the limited receptive fields and challenges in capturing long-range dependencies of auto-regressive architectures, we introduce a transformer encoder-based predictor that enables global modeling of temporal correlation. UniEdge outperforms state-of-the-arts on multiple datasets, including ETH, UCY, and SDD.

Human-Aided Trajectory Planning for Automated Vehicles through Teleoperation and Arbitration Graphs 2025-02-04
Show

Teleoperation enables remote human support of automated vehicles in scenarios where the automation is not able to find an appropriate solution. Remote assistance concepts, where operators provide discrete inputs to aid specific automation modules like planning, is gaining interest due to its reduced workload on the human remote operator and improved safety. However, these concepts are challenging to implement and maintain due to their deep integration and interaction with the automated driving system. In this paper, we propose a solution to facilitate the implementation of remote assistance concepts that intervene on planning level and extend the operational design domain of the vehicle at runtime. Using arbitration graphs, a modular decision-making framework, we integrate remote assistance into an existing automated driving system without modifying the original software components. Our simulative implementation demonstrates this approach in two use cases, allowing operators to adjust planner constraints and enable trajectory generation beyond nominal operational design domains.

7 pag...

7 pages, 8 figures, handed in for possible publication at IEEE IV 2025, video demonstration available at https://www.youtube.com/watch?v=fVSO-YOeGMk

One Diffusion Step to Real-World Super-Resolution via Flow Trajectory Distillation 2025-02-04
Show

Diffusion models (DMs) have significantly advanced the development of real-world image super-resolution (Real-ISR), but the computational cost of multi-step diffusion models limits their application. One-step diffusion models generate high-quality images in a one sampling step, greatly reducing computational overhead and inference latency. However, most existing one-step diffusion methods are constrained by the performance of the teacher model, where poor teacher performance results in image artifacts. To address this limitation, we propose FluxSR, a novel one-step diffusion Real-ISR technique based on flow matching models. We use the state-of-the-art diffusion model FLUX.1-dev as both the teacher model and the base model. First, we introduce Flow Trajectory Distillation (FTD) to distill a multi-step flow matching model into a one-step Real-ISR. Second, to improve image realism and address high-frequency artifact issues in generated images, we propose TV-LPIPS as a perceptual loss and introduce Attention Diversification Loss (ADL) as a regularization term to reduce token similarity in transformer, thereby eliminating high-frequency artifacts. Comprehensive experiments demonstrate that our method outperforms existing one-step diffusion-based Real-ISR methods. The code and model will be released at https://github.com/JianzeLi-114/FluxSR.

Enhancing Generalization via Sharpness-Aware Trajectory Matching for Dataset Condensation 2025-02-03
Show

Dataset condensation aims to synthesize datasets with a few representative samples that can effectively represent the original datasets. This enables efficient training and produces models with performance close to those trained on the original sets. Most existing dataset condensation methods conduct dataset learning under the bilevel (inner- and outer-loop) based optimization. However, the preceding methods perform with limited dataset generalization due to the notoriously complicated loss landscape and expensive time-space complexity of the inner-loop unrolling of bilevel optimization. These issues deteriorate when the datasets are learned via matching the trajectories of networks trained on the real and synthetic datasets with a long horizon inner-loop. To address these issues, we introduce Sharpness-Aware Trajectory Matching (SATM), which enhances the generalization capability of learned synthetic datasets by optimising the sharpness of the loss landscape and objective simultaneously. Moreover, our approach is coupled with an efficient hypergradient approximation that is mathematically well-supported and straightforward to implement along with controllable computational overhead. Empirical evaluations of SATM demonstrate its effectiveness across various applications, including in-domain benchmarks and out-of-domain settings. Moreover, its easy-to-implement properties afford flexibility, allowing it to integrate with other advanced sharpness-aware minimizers. Our code will be released.

Rule-Based Error Detection and Correction to Operationalize Movement Trajectory Classification 2025-02-03
Show

Classification of movement trajectories has many applications in transportation and is a key component for large-scale movement trajectory generation and anomaly detection which has key safety applications in the aftermath of a disaster or other external shock. However, the current state-of-the-art (SOTA) are based on supervised deep learning - which leads to challenges when the distribution of trajectories changes due to such a shock. We provide a neuro-symbolic rule-based framework to conduct error correction and detection of these models to integrate into our movement trajectory platform. We provide a suite of experiments on several recent SOTA models where we show highly accurate error detection, the ability to improve accuracy with a changing test distribution, and accuracy improvement for the base use case in addition to a suite of theoretical properties that informed algorithm development. Specifically, we show an F1 scores for predicting errors of up to 0.984, significant performance increase for out-of distribution accuracy (8.51% improvement over SOTA for zero-shot accuracy), and accuracy improvement over the SOTA model.

Trajectory World Models for Heterogeneous Environments 2025-02-03
Show

Heterogeneity in sensors and actuators across environments poses a significant challenge to building large-scale pre-trained world models on top of this low-dimensional sensor information. In this work, we explore pre-training world models for heterogeneous environments by addressing key transfer barriers in both data diversity and model flexibility. We introduce UniTraj, a unified dataset comprising over one million trajectories from 80 environments, designed to scale data while preserving critical diversity. Additionally, we propose TrajWorld, a novel architecture capable of flexibly handling varying sensor and actuator information and capturing environment dynamics in-context. Pre-training TrajWorld on UniTraj demonstrates significant improvements in transition prediction and achieves a new state-of-the-art for off-policy evaluation. To the best of our knowledge, this work, for the first time, demonstrates the transfer benefits of world models across heterogeneous and complex control environments.

Trajectory Map-Matching in Urban Road Networks Based on RSS Measurements 2025-02-03
Show

This paper proposes an RSS-based approach to reconstruct vehicle trajectories within a road network, enforcing signal propagation rules and vehicle mobility constraints to mitigate the impact of RSS noise and sparsity. The key challenge lies in leveraging latent spatiotemporal correlations within RSS data while navigating complex road networks. To address this, we develop a Hidden Markov Model (HMM)-based RSS embedding (HRE) technique that employs alternating optimization to infer vehicle trajectories from RSS measurements. This model captures spatiotemporal dependencies while a road graph ensures network compliance. Additionally, we introduce a maximum speed-constrained rough trajectory estimation (MSR) method to guide the optimization process, enabling rapid convergence to a favorable local solution.

Resilient UAV Trajectory Planning via Few-Shot Meta-Offline Reinforcement Learning 2025-02-03
Show

Reinforcement learning (RL) has been a promising essence in future 5G-beyond and 6G systems. Its main advantage lies in its robust model-free decision-making in complex and large-dimension wireless environments. However, most existing RL frameworks rely on online interaction with the environment, which might not be feasible due to safety and cost concerns. Another problem with online RL is the lack of scalability of the designed algorithm with dynamic or new environments. This work proposes a novel, resilient, few-shot meta-offline RL algorithm combining offline RL using conservative Q-learning (CQL) and meta-learning using model-agnostic meta-learning (MAML). The proposed algorithm can train RL models using static offline datasets without any online interaction with the environments. In addition, with the aid of MAML, the proposed model can be scaled up to new unseen environments. We showcase the proposed algorithm for optimizing an unmanned aerial vehicle (UAV) 's trajectory and scheduling policy to minimize the age-of-information (AoI) and transmission power of limited-power devices. Numerical results show that the proposed few-shot meta-offline RL algorithm converges faster than baseline schemes, such as deep Q-networks and CQL. In addition, it is the only algorithm that can achieve optimal joint AoI and transmission power using an offline dataset with few shots of data points and is resilient to network failures due to unprecedented environmental changes.

Learning to Learn Weight Generation via Trajectory Diffusion 2025-02-03
Show

Diffusion-based algorithms have emerged as promising techniques for weight generation, particularly in scenarios like multi-task learning that require frequent weight updates. However, existing solutions suffer from limited cross-task transferability. In addition, they only utilize optimal weights as training samples, ignoring the value of other weights in the optimization process. To address these issues, we propose Lt-Di, which integrates the diffusion algorithm with meta-learning to generate weights for unseen tasks. Furthermore, we extend the vanilla diffusion algorithm into a trajectory diffusion algorithm to utilize other weights along the optimization trajectory. Trajectory diffusion decomposes the entire diffusion chain into multiple shorter ones, improving training and inference efficiency. We analyze the convergence properties of the weight generation paradigm and improve convergence efficiency without additional time overhead. Our experiments demonstrate Lt-Di's higher accuracy while reducing computational overhead across various tasks, including zero-shot and few-shot learning, multi-domain generalization, and large-scale language model fine-tuning.Our code is released at https://github.com/tuantuange/Lt-Di.

GTG: Generalizable Trajectory Generation Model for Urban Mobility 2025-02-03
Show

Trajectory data mining is crucial for smart city management. However, collecting large-scale trajectory datasets is challenging due to factors such as commercial conflicts and privacy regulations. Therefore, we urgently need trajectory generation techniques to address this issue. Existing trajectory generation methods rely on the global road network structure of cities. When the road network structure changes, these methods are often not transferable to other cities. In fact, there exist invariant mobility patterns between different cities: 1) People prefer paths with the minimal travel cost; 2) The travel cost of roads has an invariant relationship with the topological features of the road network. Based on the above insight, this paper proposes a Generalizable Trajectory Generation model (GTG). The model consists of three parts: 1) Extracting city-invariant road representation based on Space Syntax method; 2) Cross-city travel cost prediction through disentangled adversarial training; 3) Travel preference learning by shortest path search and preference update. By learning invariant movement patterns, the model is capable of generating trajectories in new cities. Experiments on three datasets demonstrates that our model significantly outperforms existing models in terms of generalization ability.

12 pages, 5 figures
Traffic expertise meets residual RL: Knowledge-informed model-based residual reinforcement learning for CAV trajectory control 2025-02-03
Show

Model-based reinforcement learning (RL) is anticipated to exhibit higher sample efficiency compared to model-free RL by utilizing a virtual environment model. However, it is challenging to obtain sufficiently accurate representations of the environmental dynamics due to uncertainties in complex systems and environments. An inaccurate environment model may degrade the sample efficiency and performance of model-based RL. Furthermore, while model-based RL can improve sample efficiency, it often still requires substantial training time to learn from scratch, potentially limiting its advantages over model-free approaches. To address these challenges, this paper introduces a knowledge-informed model-based residual reinforcement learning framework aimed at enhancing learning efficiency by infusing established expert knowledge into the learning process and avoiding the issue of beginning from zero. Our approach integrates traffic expert knowledge into a virtual environment model, employing the Intelligent Driver Model (IDM) for basic dynamics and neural networks for residual dynamics, thus ensuring adaptability to complex scenarios. We propose a novel strategy that combines traditional control methods with residual RL, facilitating efficient learning and policy optimization without the need to learn from scratch. The proposed approach is applied to CAV trajectory control tasks for the dissipation of stop-and-go waves in mixed traffic flow. Experimental results demonstrate that our proposed approach enables the CAV agent to achieve superior performance in trajectory control compared to the baseline agents in terms of sample efficiency, traffic flow smoothness and traffic mobility. The source code and supplementary materials are available at: https://zihaosheng.github.io/traffic-expertise-RL/.

Accep...

Accepted by Communications in Transportation Research

Robust Trajectory Generation and Control for Quadrotor Motion Planning with Field-of-View Control Barrier Certification 2025-02-03
Show

Many approaches to multi-robot coordination are susceptible to failure due to communication loss and uncertainty in estimation. We present a real-time communication-free distributed algorithm for navigating robots to their desired goals certified by control barrier functions, that model and control the onboard sensing behavior to keep neighbors in the limited field of view for position estimation. The approach is robust to temporary tracking loss and directly synthesizes control in real time to stabilize visual contact through control Lyapunov-barrier functions. The main contributions of this paper are a continuous-time robust trajectory generation and control method certified by control barrier functions for distributed multi-robot systems and a discrete optimization procedure, namely, MPC-CBF, to approximate the certified controller. In addition, we propose a linear surrogate of high-order control barrier function constraints and use sequential quadratic programming to solve MPC-CBF efficiently. We demonstrate results in simulation with 10 robots and physical experiments with 2 custom-built UAVs. To the best of our knowledge, this work is the first of its kind to generate a robust continuous-time trajectory and controller concurrently, certified by control barrier functions utilizing piecewise splines.

13 pa...

13 pages, 10 figures, submitted to RSS 2025

Enhancing Offline Reinforcement Learning with Curriculum Learning-Based Trajectory Valuation 2025-02-02
Show

The success of deep reinforcement learning (DRL) relies on the availability and quality of training data, often requiring extensive interactions with specific environments. In many real-world scenarios, where data collection is costly and risky, offline reinforcement learning (RL) offers a solution by utilizing data collected by domain experts and searching for a batch-constrained optimal policy. This approach is further augmented by incorporating external data sources, expanding the range and diversity of data collection possibilities. However, existing offline RL methods often struggle with challenges posed by non-matching data from these external sources. In this work, we specifically address the problem of source-target domain mismatch in scenarios involving mixed datasets, characterized by a predominance of source data generated from random or suboptimal policies and a limited amount of target data generated from higher-quality policies. To tackle this problem, we introduce Transition Scoring (TS), a novel method that assigns scores to transitions based on their similarity to the target domain, and propose Curriculum Learning-Based Trajectory Valuation (CLTV), which effectively leverages these transition scores to identify and prioritize high-quality trajectories through a curriculum learning approach. Our extensive experiments across various offline RL methods and MuJoCo environments, complemented by rigorous theoretical analysis, demonstrate that CLTV enhances the overall performance and transferability of policies learned by offline RL algorithms.

Accep...

Accepted at AAMAS 2025

Trajectory Planning and Control for Differentially Flat Fixed-Wing Aerial Systems 2025-02-01
Show

Efficient real-time trajectory planning and control for fixed-wing unmanned aerial vehicles is challenging due to their non-holonomic nature, complex dynamics, and the additional uncertainties introduced by unknown aerodynamic effects. In this paper, we present a fast and efficient real-time trajectory planning and control approach for fixed-wing unmanned aerial vehicles, leveraging the differential flatness property of fixed-wing aircraft in coordinated flight conditions to generate dynamically feasible trajectories. The approach provides the ability to continuously replan trajectories, which we show is useful to dynamically account for the curvature constraint as the aircraft advances along its path. Extensive simulations and real-world experiments validate our approach, showcasing its effectiveness in generating trajectories even in challenging conditions for small FW such as wind disturbances.

Approved at Icra 25
xTED: Cross-Domain Adaptation via Diffusion-Based Trajectory Editing 2025-02-01
Show

Reusing pre-collected data from different domains is an appealing solution for decision-making tasks, especially when data in the target domain are limited. Existing cross-domain policy transfer methods mostly aim at learning domain correspondences or corrections to facilitate policy learning, such as learning task/domain-specific discriminators, representations, or policies. This design philosophy often results in heavy model architectures or task/domain-specific modeling, lacking flexibility. This reality makes us wonder: can we directly bridge the domain gaps universally at the data level, instead of relying on complex downstream cross-domain policy transfer procedures? In this study, we propose the Cross-Domain Trajectory EDiting (xTED) framework that employs a specially designed diffusion model for cross-domain trajectory adaptation. Our proposed model architecture effectively captures the intricate dependencies among states, actions, and rewards, as well as the dynamics patterns within target data. Edited by adding noises and denoising with the pre-trained diffusion model, source domain trajectories can be transformed to align with target domain properties while preserving original semantic information. This process effectively corrects underlying domain gaps, enhancing state realism and dynamics reliability in source data, and allowing flexible integration with various single-domain and cross-domain downstream policy learning methods. Despite its simplicity, xTED demonstrates superior performance in extensive simulation and real-robot experiments.

xTED ...

xTED offers a novel, generic, flexible, simple and effective paradigm that casts cross-domain policy adaptation as a data pre-processing problem

K Nearest Neighbor-Guided Trajectory Similarity Learning 2025-02-01
Show

Trajectory similarity is fundamental to many spatio-temporal data mining applications. Recent studies propose deep learning models to approximate conventional trajectory similarity measures, exploiting their fast inference time once trained. Although efficient inference has been reported, challenges remain in similarity approximation accuracy due to difficulties in trajectory granularity modeling and in exploiting similarity signals in the training data. To fill this gap, we propose TSMini, a highly effective trajectory similarity model with a sub-view modeling mechanism capable of learning multi-granularity trajectory patterns and a k nearest neighbor-based loss that guides TSMini to learn not only absolute similarity values between trajectories but also their relative similarity ranks. Together, these two innovations enable highly accurate trajectory similarity approximation. Experiments show that TSMini can outperform the state-of-the-art models by 22% in accuracy on average when learning trajectory similarity measures.

Trajectory Optimization Under Stochastic Dynamics Leveraging Maximum Mean Discrepancy 2025-01-31
Show

This paper addresses sampling-based trajectory optimization for risk-aware navigation under stochastic dynamics. Typically such approaches operate by computing $\tilde{N}$ perturbed rollouts around the nominal dynamics to estimate the collision risk associated with a sequence of control commands. We consider a setting where it is expensive to estimate risk using perturbed rollouts, for example, due to expensive collision-checks. We put forward two key contributions. First, we develop an algorithm that distills the statistical information from a larger set of rollouts to a reduced-set with sample size $N&lt;&lt;\tilde{N}$. Consequently, we estimate collision risk using just $N$ rollouts instead of $\tilde{N}$. Second, we formulate a novel surrogate for the collision risk that can leverage the distilled statistical information contained in the reduced-set. We formalize both algorithmic contributions using distribution embedding in Reproducing Kernel Hilbert Space (RKHS) and Maximum Mean Discrepancy (MMD). We perform extensive benchmarking to demonstrate that our MMD-based approach leads to safer trajectories at low sample regime than existing baselines using Conditional Value-at Risk (CVaR) based collision risk estimate.

https...

https://github.com/Basant1861/MPC-MMD

Best Policy Learning from Trajectory Preference Feedback 2025-01-31
Show

We address the problem of best policy identification in preference-based reinforcement learning (PbRL), where learning occurs from noisy binary preferences over trajectory pairs rather than explicit numerical rewards. This approach is useful for post-training optimization of generative AI models during multi-turn user interactions, where preference feedback is more robust than handcrafted reward models. In this setting, learning is driven by both an offline preference dataset -- collected from a rater of unknown 'competence' -- and online data collected with pure exploration. Since offline datasets may exhibit out-of-distribution (OOD) biases, principled online data collection is necessary. To address this, we propose Posterior Sampling for Preference Learning ($\mathsf{PSPL}$), a novel algorithm inspired by Top-Two Thompson Sampling, that maintains independent posteriors over the true reward model and transition dynamics. We provide the first theoretical guarantees for PbRL in this setting, establishing an upper bound on the simple Bayesian regret of $\mathsf{PSPL}$. Since the exact algorithm can be computationally impractical, we also provide an approximate version that outperforms existing baselines.

Can Optimization Trajectories Explain Multi-Task Transfer? 2025-01-30
Show

Despite the widespread adoption of multi-task training in deep learning, little is understood about how multi-task learning (MTL) affects generalization. Prior work has conjectured that the negative effects of MTL are due to optimization challenges that arise during training, and many optimization methods have been proposed to improve multi-task performance. However, recent work has shown that these methods fail to consistently improve multi-task generalization. In this work, we seek to improve our understanding of these failures by empirically studying how MTL impacts the optimization of tasks, and whether this impact can explain the effects of MTL on generalization. We show that MTL results in a generalization gap (a gap in generalization at comparable training loss) between single-task and multi-task trajectories early into training. However, we find that factors of the optimization trajectory previously proposed to explain generalization gaps in single-task settings cannot explain the generalization gaps between single-task and multi-task models. Moreover, we show that the amount of gradient conflict between tasks is correlated with negative effects to task optimization, but is not predictive of generalization. Our work sheds light on the underlying causes for failures in MTL and, importantly, raises questions about the role of general purpose multi-task optimization algorithms.

13 pa...

13 pages; Published in TMLR

Realtime Limb Trajectory Optimization for Humanoid Running Through Centroidal Angular Momentum Dynamics 2025-01-30
Show

One of the essential aspects of humanoid robot running is determining the limb-swinging trajectories. During the flight phases, where the ground reaction forces are not available for regulation, the limb swinging trajectories are significant for the stability of the next stance phase. Due to the conservation of angular momentum, improper leg and arm swinging results in highly tilted and unsustainable body configurations at the next stance phase landing. In such cases, the robotic system fails to maintain locomotion independent of the stability of the center of mass trajectories. This problem is more apparent for fast and high flight time trajectories. This paper proposes a real-time nonlinear limb trajectory optimization problem for humanoid running. The optimization problem is tested on two different humanoid robot models, and the generated trajectories are verified using a running algorithm for both robots in a simulation environment.

This ...

This paper has been accepted for publication at the IEEE International Conference on Robotics and Automation (ICRA), Atlanta 2025. v2: - A Github link to the proposed optimization tool is added. - There are no changes in the method and results

Impedance Trajectory Analysis during Power Swing for Grid-Forming Inverter with Different Current Limiters 2025-01-30
Show

Grid-forming (GFM) inverter-based resources (IBRs) are capable of emulating the external characteristics of synchronous generators (SGs) through the careful design of the control loops. However, the current limiter in the control loops of the GFM IBR poses challenges to the effectiveness of power swing detection functions designed for SG-based systems. Among various current limiting strategies, current saturation algorithms (CSAs), widely employed for their strict current limiting capability, are the focus of this paper. The paper presents a theoretical analysis of the conditions for entering and exiting the current saturation mode of the GFM IBR under three CSAs. Furthermore, the corresponding impedance trajectories observed by the distance relay on the GFM IBR side are investigated. The analysis results reveal that the unique impedance trajectories under these CSAs markedly differ from those associated with SGs. Moreover, it is demonstrated that the conventional power swing detection scheme may lose functionality due to the rapid movement of the trajectory or its failure to pass through the detection zones. Conclusions are validated through simulations in MATLAB/Simulink.

Online Trajectory Replanner for Dynamically Grasping Irregular Objects 2025-01-29
Show

This paper presents a new trajectory replanner for grasping irregular objects. Unlike conventional grasping tasks where the object's geometry is assumed simple, we aim to achieve a "dynamic grasp" of the irregular objects, which requires continuous adjustment during the grasping process. To effectively handle irregular objects, we propose a trajectory optimization framework that comprises two phases. Firstly, in a specified time limit of 10s, initial offline trajectories are computed for a seamless motion from an initial configuration of the robot to grasp the object and deliver it to a pre-defined target location. Secondly, fast online trajectory optimization is implemented to update robot trajectories in real-time within 100 ms. This helps to mitigate pose estimation errors from the vision system. To account for model inaccuracies, disturbances, and other non-modeled effects, trajectory tracking controllers for both the robot and the gripper are implemented to execute the optimal trajectories from the proposed framework. The intensive experimental results effectively demonstrate the performance of our trajectory planning framework in both simulation and real-world scenarios.

7 pag...

7 pages. Accepted to ICRA 2025

A New Perspective to Fish Trajectory Imputation: A Methodology for Spatiotemporal Modeling of Acoustically Tagged Fish Data 2025-01-29
Show

The focus of this paper is a key component of a methodology for understanding, interpolating, and predicting fish movement patterns based on spatiotemporal data recorded by spatially static acoustic receivers. Unlike GPS trackers which emit satellite signals from the animal's location, acoustic receivers are akin to stationary motion sensors that record movements within their detection range. Thus, for periods of time, fish may be far from the receivers, resulting in the absence of observations. The lack of information on the fish's location for extended time periods poses challenges to the understanding of fish movement patterns, and hence, the identification of proper statistical inference frameworks for modeling the trajectories. As the initial step in our methodology, in this paper, we devise and implement a simulation-based imputation strategy that relies on both Markov chain and random-walk principles to enhance our dataset over time. This methodology will be generalizable and applicable to all fish species with similar migration patterns or data with similar structures due to the use of static acoustic receivers.

Large Language Models for Single-Step and Multi-Step Flight Trajectory Prediction 2025-01-29
Show

Flight trajectory prediction is a critical time series task in aviation. While deep learning methods have shown significant promise, the application of large language models (LLMs) to this domain remains underexplored. This study pioneers the use of LLMs for flight trajectory prediction by reframing it as a language modeling problem. Specifically, We extract features representing the aircraft's position and status from ADS-B flight data to construct a prompt-based dataset, where trajectory waypoints are converted into language tokens. The dataset is then employed to fine-tune LLMs, enabling them to learn complex spatiotemporal patterns for accurate predictions. Comprehensive experiments demonstrate that LLMs achieve notable performance improvements in both single-step and multi-step predictions compared to traditional methods, with LLaMA-3.1 model achieving the highest overall accuracy. However, the high inference latency of LLMs poses a challenge for real-time applications, underscoring the need for further research in this promising direction.

9 pages, 7 figures
Target-driven Self-Distillation for Partial Observed Trajectories Forecasting 2025-01-28
Show

Accurate prediction of future trajectories of traffic agents is essential for ensuring safe autonomous driving. However, partially observed trajectories can significantly degrade the performance of even state-of-the-art models. Previous approaches often rely on knowledge distillation to transfer features from fully observed trajectories to partially observed ones. This involves firstly training a fully observed model and then using a distillation process to create the final model. While effective, they require multi-stage training, making the training process very expensive. Moreover, knowledge distillation can lead to a performance degradation of the model. In this paper, we introduce a Target-driven Self-Distillation method (TSD) for motion forecasting. Our method leverages predicted accurate targets to guide the model in making predictions under partial observation conditions. By employing self-distillation, the model learns from the feature distributions of both fully observed and partially observed trajectories during a single end-to-end training process. This enhances the model's ability to predict motion accurately in both fully observed and partially observed scenarios. We evaluate our method on multiple datasets and state-of-the-art motion forecasting models. Extensive experimental results demonstrate that our approach achieves significant performance improvements in both settings. To facilitate further research, we will release our code and model checkpoints.

Hierarchical Trajectory (Re)Planning for a Large Scale Swarm 2025-01-28
Show

We consider the trajectory replanning problem for a large-scale swarm in a cluttered environment. Our path planner replans for robots by utilizing a hierarchical approach, dividing the workspace, and computing collision-free paths for robots within each cell in parallel. Distributed trajectory optimization generates a deadlock-free trajectory for efficient execution and maintains the control feasibility even when the optimization fails. Our hierarchical approach combines the benefits of both centralized and decentralized methods, achieving a high task success rate while providing real-time replanning capability. Compared to decentralized approaches, our approach effectively avoids deadlocks and collisions, significantly increasing the task success rate. We demonstrate the real-time performance of our algorithm with up to 142 robots in simulation, and a representative 24 physical Crazyflie nano-quadrotor experiment.

13 pa...

13 pages, 14 figures. arXiv admin note: substantial text overlap with arXiv:2407.02777

Toward Safe Integration of UAM in Terminal Airspace: UAM Route Feasibility Assessment using Probabilistic Aircraft Trajectory Prediction 2025-01-28
Show

Integrating Urban Air Mobility (UAM) into airspace managed by Air Traffic Control (ATC) poses significant challenges, particularly in congested terminal environments. This study proposes a framework to assess the feasibility of UAM route integration using probabilistic aircraft trajectory prediction. By leveraging conditional Normalizing Flows, the framework predicts short-term trajectory distributions of conventional aircraft, enabling UAM vehicles to dynamically adjust speeds and maintain safe separations. The methodology was applied to airspace over Seoul metropolitan area, encompassing interactions between UAM and conventional traffic at multiple altitudes and lanes. The results reveal that different physical locations of lanes and routes experience varying interaction patterns and encounter dynamics. For instance, Lane 1 at lower altitudes (1,500 ft and 2,000 ft) exhibited minimal interactions with conventional aircraft, resulting in the largest separations and the most stable delay proportions. In contrast, Lane 4 near the airport experienced more frequent and complex interactions due to its proximity to departing traffic. The limited trajectory data for departing aircraft in this region occasionally led to tighter separations and increased operational challenges. This study underscores the potential of predictive modeling in facilitating UAM integration while highlighting critical trade-offs between safety and efficiency. The findings contribute to refining airspace management strategies and offer insights for scaling UAM operations in complex urban environments.

10 pages, 7 figures
Beyond In-Distribution Performance: A Cross-Dataset Study of Trajectory Prediction Robustness 2025-01-27
Show

We study the Out-of-Distribution (OoD) generalization ability of three SotA trajectory prediction models with comparable In-Distribution (ID) performance but different model designs. We investigate the influence of inductive bias, size of training data and data augmentation strategy by training the models on Argoverse 2 (A2) and testing on Waymo Open Motion (WO) and vice versa. We find that the smallest model with highest inductive bias exhibits the best OoD generalization across different augmentation strategies when trained on the smaller A2 dataset and tested on the large WO dataset. In the converse setting, training all models on the larger WO dataset and testing on the smaller A2 dataset, we find that all models generalize poorly, even though the model with the highest inductive bias still exhibits the best generalization ability. We discuss possible reasons for this surprising finding and draw conclusions about the design and test of trajectory prediction models and benchmarks.

arXiv...

arXiv admin note: text overlap with arXiv:2407.13431

Error-State LQR Formulation for Quadrotor UAV Trajectory Tracking 2025-01-27
Show

This article presents an error-state Linear Quadratic Regulator (LQR) formulation for robust trajectory tracking in quadrotor Unmanned Aerial Vehicles (UAVs). The proposed approach leverages error-state dynamics and employs exponential coordinates to represent orientation errors, enabling a linearized system representation for real-time control. The control strategy integrates an LQR-based full-state feedback controller for trajectory tracking, combined with a cascaded bodyrate controller to handle actuator dynamics. Detailed derivations of the error-state dynamics, the linearization process, and the controller design are provided, highlighting the applicability of the method for precise and stable quadrotor control in dynamic environments.

TEA: Trajectory Encoding Augmentation for Robust and Transferable Policies in Offline Reinforcement Learning 2025-01-26
Show

In this paper, we investigate offline reinforcement learning (RL) with the goal of training a single robust policy that generalizes effectively across environments with unseen dynamics. We propose a novel approach, Trajectory Encoding Augmentation (TEA), which extends the state space by integrating latent representations of environmental dynamics obtained from sequence encoders, such as AutoEncoders. Our findings show that incorporating these encodings with TEA improves the transferability of a single policy to novel environments with new dynamics, surpassing methods that rely solely on unmodified states. These results indicate that TEA captures critical, environment-specific characteristics, enabling RL agents to generalize effectively across dynamic conditions.

Accep...

Accepted to ESANN 2025

Improving Out-of-Distribution Generalization of Trajectory Prediction for Autonomous Driving via Polynomial Representations 2025-01-25
Show

Robustness against Out-of-Distribution (OoD) samples is a key performance indicator of a trajectory prediction model. However, the development and ranking of state-of-the-art (SotA) models are driven by their In-Distribution (ID) performance on individual competition datasets. We present an OoD testing protocol that homogenizes datasets and prediction tasks across two large-scale motion datasets. We introduce a novel prediction algorithm based on polynomial representations for agent trajectory and road geometry on both the input and output sides of the model. With a much smaller model size, training effort, and inference time, we reach near SotA performance for ID testing and significantly improve robustness in OoD testing. Within our OoD testing protocol, we further study two augmentation strategies of SotA models and their effects on model generalization. Highlighting the contrast between ID and OoD performance, we suggest adding OoD testing to the evaluation criteria of trajectory prediction models.

Towards Robust Spacecraft Trajectory Optimization via Transformers 2025-01-25
Show

Future multi-spacecraft missions require robust autonomous trajectory optimization capabilities to ensure safe and efficient rendezvous operations. This capability hinges on solving non-convex optimal control problems in real-time, although traditional iterative methods such as sequential convex programming impose significant computational challenges. To mitigate this burden, the Autonomous Rendezvous Transformer (ART) introduced a generative model trained to provide near-optimal initial guesses. This approach provides convergence to better local optima (e.g., fuel optimality), improves feasibility rates, and results in faster convergence speed of optimization algorithms through warm-starting. This work extends the capabilities of ART to address robust chance-constrained optimal control problems. Specifically, ART is applied to challenging rendezvous scenarios in Low Earth Orbit (LEO), ensuring fault-tolerant behavior under uncertainty. Through extensive experimentation, the proposed warm-starting strategy is shown to consistently produce high-quality reference trajectories, achieving up to 30% cost improvement and 50% reduction in infeasible cases compared to conventional methods, demonstrating robust performance across multiple state representations. Additionally, a post hoc evaluation framework is proposed to assess the quality of generated trajectories and mitigate runtime failures, marking an initial step toward the reliable deployment of AI-driven solutions in safety-critical autonomous systems such as spacecraft.

Submi...

Submitted to the IEEE Aerospace Conference 2025. 13 pages, 10 figures

Where Do You Go? Pedestrian Trajectory Prediction using Scene Features 2025-01-23
Show

Accurate prediction of pedestrian trajectories is crucial for enhancing the safety of autonomous vehicles and reducing traffic fatalities involving pedestrians. While numerous studies have focused on modeling interactions among pedestrians to forecast their movements, the influence of environmental factors and scene-object placements has been comparatively underexplored. In this paper, we present a novel trajectory prediction model that integrates both pedestrian interactions and environmental context to improve prediction accuracy. Our approach captures spatial and temporal interactions among pedestrians within a sparse graph framework. To account for pedestrian-scene interactions, we employ advanced image enhancement and semantic segmentation techniques to extract detailed scene features. These scene and interaction features are then fused through a cross-attention mechanism, enabling the model to prioritize relevant environmental factors that influence pedestrian movements. Finally, a temporal convolutional network processes the fused features to predict future pedestrian trajectories. Experimental results demonstrate that our method significantly outperforms existing state-of-the-art approaches, achieving ADE and FDE values of 0.252 and 0.372 meters, respectively, underscoring the importance of incorporating both social interactions and environmental context in pedestrian trajectory prediction.

Accep...

Accepted by 2024 International Conference on Intelligent Computing and its Emerging Applications

In-Trajectory Inverse Reinforcement Learning: Learn Incrementally Before An Ongoing Trajectory Terminates 2025-01-23
Show

Inverse reinforcement learning (IRL) aims to learn a reward function and a corresponding policy that best fit the demonstrated trajectories of an expert. However, current IRL works cannot learn incrementally from an ongoing trajectory because they have to wait to collect at least one complete trajectory to learn. To bridge the gap, this paper considers the problem of learning a reward function and a corresponding policy while observing the initial state-action pair of an ongoing trajectory and keeping updating the learned reward and policy when new state-action pairs of the ongoing trajectory are observed. We formulate this problem as an online bi-level optimization problem where the upper level dynamically adjusts the learned reward according to the newly observed state-action pairs with the help of a meta-regularization term, and the lower level learns the corresponding policy. We propose a novel algorithm to solve this problem and guarantee that the algorithm achieves sub-linear local regret $O(\sqrt{T}+\log T+\sqrt{T}\log T)$. If the reward function is linear, we prove that the proposed algorithm achieves sub-linear regret $O(\log T)$. Experiments are used to validate the proposed algorithm.

Towards spiking analog hardware implementation of a trajectory interpolation mechanism for smooth closed-loop control of a spiking robot arm 2025-01-23
Show

Neuromorphic engineering aims to incorporate the computational principles found in animal brains, into modern technological systems. Following this approach, in this work we propose a closed-loop neuromorphic control system for an event-based robotic arm. The proposed system consists of a shifted Winner-Take-All spiking network for interpolating a reference trajectory and a spiking comparator network responsible for controlling the flow continuity of the trajectory, which is fed back to the actual position of the robot. The comparator model is based on a differential position comparison neural network, which governs the execution of the next trajectory points to close the control loop between both components of the system. To evaluate the system, we implemented and deployed the model on a mixed-signal analog-digital neuromorphic platform, the DYNAP-SE2, to facilitate integration and communication with the ED-Scorbot robotic arm platform. Experimental results on one joint of the robot validate the use of this architecture and pave the way for future neuro-inspired control of the entire robot.

5 pag...

5 pages, 7 figures, conference, ISCAS 2025, accepted for publication, Spiking Neural Network

Knowledge-Informed Multi-Agent Trajectory Prediction at Signalized Intersections for Infrastructure-to-Everything 2025-01-23
Show

Multi-agent trajectory prediction at signalized intersections is crucial for developing efficient intelligent transportation systems and safe autonomous driving systems. Due to the complexity of intersection scenarios and the limitations of single-vehicle perception, the performance of vehicle-centric prediction methods has reached a plateau. Furthermore, most works underutilize critical intersection information, including traffic signals, and behavior patterns induced by road structures. Therefore, we propose a multi-agent trajectory prediction framework at signalized intersections dedicated to Infrastructure-to-Everything (I2XTraj). Our framework leverages dynamic graph attention to integrate knowledge from traffic signals and driving behaviors. A continuous signal-informed mechanism is proposed to adaptively process real-time traffic signals from infrastructure devices. Additionally, leveraging the prior knowledge of the intersection topology, we propose a driving strategy awareness mechanism to model the joint distribution of goal intentions and maneuvers. To the best of our knowledge, I2XTraj represents the first multi-agent trajectory prediction framework explicitly designed for infrastructure deployment, supplying subscribable prediction services to all vehicles at intersections. I2XTraj demonstrates state-of-the-art performance on both the Vehicle-to-Infrastructure dataset V2X-Seq and the aerial-view dataset SinD for signalized intersections. Quantitative evaluations show that our approach outperforms existing methods by more than 30% in both multi-agent and single-agent scenarios.

Zero-Shot Trajectory Planning for Signal Temporal Logic Tasks 2025-01-23
Show

Signal Temporal Logic (STL) is a powerful specification language for describing complex temporal behaviors of continuous signals, making it well-suited for high-level robotic task descriptions. However, generating executable plans for STL tasks is challenging, as it requires consideration of the coupling between the task specification and the system dynamics. Existing approaches either follow a model-based setting that explicitly requires knowledge of the system dynamics or adopt a task-oriented data-driven approach to learn plans for specific tasks. In this work, we investigate the problem of generating executable STL plans for systems whose dynamics are unknown a priori. We propose a new planning framework that uses only task-agnostic data during the offline training stage, enabling zero-shot generalization to new STL tasks. Our framework is hierarchical, involving: (i) decomposing the STL task into a set of progress and time constraints, (ii) searching for time-aware waypoints guided by task-agnostic data, and (iii) generating trajectories using a pre-trained safe diffusion model. Simulation results demonstrate the effectiveness of our method indeed in achieving zero-shot generalization to various STL tasks.

submitted
One Fits All: General Mobility Trajectory Modeling via Masked Conditional Diffusion 2025-01-23
Show

Trajectory data play a crucial role in many applications, ranging from network optimization to urban planning. Existing studies on trajectory data are task-specific, and their applicability is limited to the specific tasks on which they have been trained, such as generation, recovery, or prediction. However, the potential of a unified model has not yet been fully explored in trajectory modeling. Although various trajectory tasks differ in inputs, outputs, objectives, and conditions, they share common mobility patterns. Based on these common patterns, we can construct a general framework that enables a single model to address different tasks. However, building a trajectory task-general framework faces two critical challenges: 1) the diversity in the formats of different tasks and 2) the complexity of the conditions imposed on different tasks. In this work, we propose a general trajectory modeling framework via masked conditional diffusion (named GenMove). Specifically, we utilize mask conditions to unify diverse formats. To adapt to complex conditions associated with different tasks, we utilize historical trajectory data to obtain contextual trajectory embeddings, which include rich contexts such as spatiotemporal characteristics and user preferences. Integrating the contextual trajectory embedding into diffusion models through a classifier-free guidance approach allows the model to flexibly adjust its outputs based on different conditions. Extensive experiments on mainstream tasks demonstrate that our model significantly outperforms state-of-the-art baselines, with the highest performance improvement exceeding 13% in generation tasks.

A Spatio-temporal Graph Network Allowing Incomplete Trajectory Input for Pedestrian Trajectory Prediction 2025-01-22
Show

Pedestrian trajectory prediction is important in the research of mobile robot navigation in environments with pedestrians. Most pedestrian trajectory prediction algorithms require the input historical trajectories to be complete. If a pedestrian is unobservable in any frame in the past, then its historical trajectory become incomplete, the algorithm will not predict its future trajectory. To address this limitation, we propose the STGN-IT, a spatio-temporal graph network allowing incomplete trajectory input, which can predict the future trajectories of pedestrians with incomplete historical trajectories. STGN-IT uses the spatio-temporal graph with an additional encoding method to represent the historical trajectories and observation states of pedestrians. Moreover, STGN-IT introduces static obstacles in the environment that may affect the future trajectories as nodes to further improve the prediction accuracy. A clustering algorithm is also applied in the construction of spatio-temporal graphs. Experiments on public datasets show that STGN-IT outperforms state of the art algorithms on these metrics.

Trajectory tracking model-following control using Lyapunov redesign with output time-derivatives to compensate unmatched uncertainties 2025-01-22
Show

We study trajectory tracking for flat nonlinear systems with unmatched uncertainties using the model-following control (MFC) architecture. We apply state feedback linearisation control for the process and propose a simplified implementation of the model control loop which results in a simple model in Brunovsky-form that represents the nominal feedback linearised dynamics of the nonlinear process. To compensate possibly unmatched model uncertainties, we employ Lyapunov redesign with numeric derivatives of the output. It turns out that for a special initialisation of the model, the MFC reduces to a single-loop control design. We illustrate our results by a numerical example.

Learning segmentation from point trajectories 2025-01-21
Show

We consider the problem of segmenting objects in videos based on their motion and no other forms of supervision. Prior work has often approached this problem by using the principle of common fate, namely the fact that the motion of points that belong to the same object is strongly correlated. However, most authors have only considered instantaneous motion from optical flow. In this work, we present a way to train a segmentation network using long-term point trajectories as a supervisory signal to complement optical flow. The key difficulty is that long-term motion, unlike instantaneous motion, is difficult to model -- any parametric approximation is unlikely to capture complex motion patterns over long periods of time. We instead draw inspiration from subspace clustering approaches, proposing a loss function that seeks to group the trajectories into low-rank matrices where the motion of object points can be approximately explained as a linear combination of other point tracks. Our method outperforms the prior art on motion-based segmentation, which shows the utility of long-term motion and the effectiveness of our formulation.

NeurI...

NeurIPS 2024 Spotlight. Project https://www.robots.ox.ac.uk/~vgg/research/lrtl/

Algorithm Selection with Probing Trajectories: Benchmarking the Choice of Classifier Model 2025-01-20
Show

Recent approaches to training algorithm selectors in the black-box optimisation domain have advocated for the use of training data that is algorithm-centric in order to encapsulate information about how an algorithm performs on an instance, rather than relying on information derived from features of the instance itself. Probing-trajectories that consist of a sequence of objective performance per function evaluation obtained from a short run of an algorithm have recently shown particular promise in training accurate selectors. However, training models on this type of data requires an appropriately chosen classifier given the sequential nature of the data. There are currently no clear guidelines for choosing the most appropriate classifier for algorithm selection using time-series data from the plethora of models available. To address this, we conduct a large benchmark study using 17 different classifiers and three types of trajectory on a classification task using the BBOB benchmark suite using both leave-one-instance out and leave-one-problem out cross-validation. In contrast to previous studies using tabular data, we find that the choice of classifier has a significant impact, showing that feature-based and interval-based models are the best choices.

To ap...

To appear in Applications of Evolutionary Computation 28th International Conference, EvoApplications 2025

Spatio-temporal characterisation of underwater noise through semantic trajectories 2025-01-19
Show

Underwater noise pollution from human activities, particularly shipping, has been recognised as a serious threat to marine life. The sound generated by vessels can have various adverse effects on fish and aquatic ecosystems in general. In this setting, the estimation and analysis of the underwater noise produced by vessels is an important challenge for the preservation of the marine environment. In this paper we propose a model for the spatio-temporal characterisation of the underwater noise generated by vessels. The approach is based on the reconstruction of the vessels' trajectories from Automatic Identification System (AIS) data and on their deployment in a spatio-temporal database. Trajectories are enriched with semantic information like the acoustic characteristics of the vessels' engines or the activity performed by the vessels. We define a model for underwater noise propagation and use the trajectories' information to infer how noise propagates in the area of interest. We develop our approach for the case study of the fishery activities in the Northern Adriatic sea, an area of the Mediterranean sea which is well known to be highly exploited. We implement our approach using MobilityDB, an open source geospatial trajectory data management and analysis platform, which offers spatio-temporal operators and indexes improving the efficiency of our system. We use this platform to conduct various analyses of the underwater noise generated in the Northern Adriatic Sea, aiming at estimating the impact of fishing activities on underwater noise pollution and at demonstrating the flexibility and expressiveness of our approach.

TAME: Temporal Audio-based Mamba for Enhanced Drone Trajectory Estimation and Classification 2025-01-19
Show

The increasing prevalence of compact UAVs has introduced significant risks to public safety, while traditional drone detection systems are often bulky and costly. To address these challenges, we present TAME, the Temporal Audio-based Mamba for Enhanced Drone Trajectory Estimation and Classification. This innovative anti-UAV detection model leverages a parallel selective state-space model to simultaneously capture and learn both the temporal and spectral features of audio, effectively analyzing propagation of sound. To further enhance temporal features, we introduce a Temporal Feature Enhancement Module, which integrates spectral features into temporal data using residual cross-attention. This enhanced temporal information is then employed for precise 3D trajectory estimation and classification. Our model sets a new standard of performance on the MMUAD benchmarks, demonstrating superior accuracy and effectiveness. The code and trained models are publicly available on GitHub \url{https://github.com/AmazingDay1/TAME}.

This ...

This paper has been accepted for presentation at the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2025. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses

Audio Array-Based 3D UAV Trajectory Estimation with LiDAR Pseudo-Labeling 2025-01-19
Show

As small unmanned aerial vehicles (UAVs) become increasingly prevalent, there is growing concern regarding their impact on public safety and privacy, highlighting the need for advanced tracking and trajectory estimation solutions. In response, this paper introduces a novel framework that utilizes audio array for 3D UAV trajectory estimation. Our approach incorporates a self-supervised learning model, starting with the conversion of audio data into mel-spectrograms, which are analyzed through an encoder to extract crucial temporal and spectral information. Simultaneously, UAV trajectories are estimated using LiDAR point clouds via unsupervised methods. These LiDAR-based estimations act as pseudo labels, enabling the training of an Audio Perception Network without requiring labeled data. In this architecture, the LiDAR-based system operates as the Teacher Network, guiding the Audio Perception Network, which serves as the Student Network. Once trained, the model can independently predict 3D trajectories using only audio signals, with no need for LiDAR data or external ground truth during deployment. To further enhance precision, we apply Gaussian Process modeling for improved spatiotemporal tracking. Our method delivers top-tier performance on the MMAUD dataset, establishing a new benchmark in trajectory estimation using self-supervised learning techniques without reliance on ground truth annotations.

Accepted for ICASSP
Risk-Informed Diffusion Transformer for Long-Tail Trajectory Prediction in the Crash Scenario 2025-01-18
Show

Trajectory prediction methods have been widely applied in autonomous driving technologies. Although the overall performance accuracy of trajectory prediction is relatively high, the lack of trajectory data in critical scenarios in the training data leads to the long-tail phenomenon. Normally, the trajectories of the tail data are more critical and more difficult to predict and may include rare scenarios such as crashes. To solve this problem, we extracted the trajectory data from real-world crash scenarios, which contain more long-tail data. Meanwhile, based on the trajectory data in this scenario, we integrated graph-based risk information and diffusion with transformer and proposed the Risk-Informed Diffusion Transformer (RI-DiT) trajectory prediction method. Extensive experiments were conducted on trajectory data in the real-world crash scenario, and the results show that the algorithm we proposed has good performance. When predicting the data of the tail 10% (Top 10%), the minADE and minFDE indicators are 0.016/2.667 m. At the same time, we showed the trajectory conditions of different long-tail distributions. The distribution of trajectory data is closer to the tail, the less smooth the trajectory is. Through the trajectory data in real-world crash scenarios, Our work expands the methods to overcome the long-tail challenges in trajectory prediction. Our method, RI-DiT, integrates inverse time to collision (ITTC) and the feature of traffic flow, which can predict long-tail trajectories more accurately and improve the safety of autonomous driving systems.

Three-dimensional Trajectory Optimization for Quadrotor Tail-sitter UAVs: Traversing through Given Waypoints 2025-01-18
Show

Given the evolving application scenarios of current fixed-wing unmanned aerial vehicles (UAVs), it is necessary for UAVs to possess agile and rapid 3-dimensional flight capabilities. Typically, the trajectory of a tail-sitter is generated separately for vertical and level flights. This limits the tail-sitter's ability to move in a 3-dimensional airspace and makes it difficult to establish a smooth transition between vertical and level flights. In the present work, a 3-dimensional trajectory optimization method is proposed for quadrotor tail-sitters. Especially, the differential dynamics constraints are eliminated when generating the trajectory of the tail-sitter by utilizing differential flatness method. Additionally, the temporal parameters of the trajectory are generated using the state-of-the-art trajectory generation method called MINCO (minimum control). Subsequently, we convert the speed constraint on the vehicle into a soft constraint by discretizing the trajectory in time. This increases the likelihood that the control input limits are satisfied and the trajectory is feasible. Then, we utilize a kind of model predictive control (MPC) method to track trajectories. Even if restricting the tail-sitter's motion to a 2-dimensional horizontal plane, the solutions still outperform those of the L1 Guidance Law and Dubins path.

Efficient and Safe Trajectory Planning for Autonomous Agricultural Vehicle Headland Turning in Cluttered Orchard Environments 2025-01-18
Show

Autonomous agricultural vehicles (AAVs), including field robots and autonomous tractors, are becoming essential in modern farming by improving efficiency and reducing labor costs. A critical task in AAV operations is headland turning between crop rows. This task is challenging in orchards with limited headland space, irregular boundaries, operational constraints, and static obstacles. While traditional trajectory planning methods work well in arable farming, they often fail in cluttered orchard environments. This letter presents a novel trajectory planner that enhances the safety and efficiency of AAV headland maneuvers, leveraging advancements in autonomous driving. Our approach includes an efficient front-end algorithm and a high-performance back-end optimization. Applied to vehicles with various implements, it outperforms state-of-the-art methods in both standard and challenging orchard fields. This work bridges agricultural and autonomous driving technologies, facilitating a broader adoption of AAVs in complex orchards.

On Learning Informative Trajectory Embeddings for Imitation, Classification and Regression 2025-01-17
Show

In real-world sequential decision making tasks like autonomous driving, robotics, and healthcare, learning from observed state-action trajectories is critical for tasks like imitation, classification, and clustering. For example, self-driving cars must replicate human driving behaviors, while robots and healthcare systems benefit from modeling decision sequences, whether or not they come from expert data. Existing trajectory encoding methods often focus on specific tasks or rely on reward signals, limiting their ability to generalize across domains and tasks. Inspired by the success of embedding models like CLIP and BERT in static domains, we propose a novel method for embedding state-action trajectories into a latent space that captures the skills and competencies in the dynamic underlying decision-making processes. This method operates without the need for reward labels, enabling better generalization across diverse domains and tasks. Our contributions are threefold: (1) We introduce a trajectory embedding approach that captures multiple abilities from state-action data. (2) The learned embeddings exhibit strong representational power across downstream tasks, including imitation, classification, clustering, and regression. (3) The embeddings demonstrate unique properties, such as controlling agent behaviors in IQ-Learn and an additive structure in the latent space. Experimental results confirm that our method outperforms traditional approaches, offering more flexible and powerful trajectory representations for various applications. Our code is available at https://github.com/Erasmo1015/vte.

AAMAS 2025
STPOTR: Simultaneous Human Trajectory and Pose Prediction Using a Non-Autoregressive Transformer for Robot Following Ahead 2025-01-17
Show

In this paper, we develop a neural network model to predict future human motion from an observed human motion history. We propose a non-autoregressive transformer architecture to leverage its parallel nature for easier training and fast, accurate predictions at test time. The proposed architecture divides human motion prediction into two parts: 1) the human trajectory, which is the hip joint 3D position over time and 2) the human pose which is the all other joints 3D positions over time with respect to a fixed hip joint. We propose to make the two predictions simultaneously, as the shared representation can improve the model performance. Therefore, the model consists of two sets of encoders and decoders. First, a multi-head attention module applied to encoder outputs improves human trajectory. Second, another multi-head self-attention module applied to encoder outputs concatenated with decoder outputs facilitates learning of temporal dependencies. Our model is well-suited for robotic applications in terms of test accuracy and speed, and compares favorably with respect to state-of-the-art methods. We demonstrate the real-world applicability of our work via the Robot Follow-Ahead task, a challenging yet practical case study for our proposed model.

BILTS: A Bi-Invariant Similarity Measure for Robust Object Trajectory Recognition under Reference Frame Variations 2025-01-17
Show

When similar object motions are performed in diverse contexts but are meant to be recognized under a single classification, these contextual variations act as disturbances that negatively affect accurate motion recognition. In this paper, we focus on contextual variations caused by reference frame variations. To robustly deal with these variations, similarity measures have been introduced that compare object motion trajectories in a context-invariant manner. However, most are highly sensitive to noise near singularities, where the measure is not uniquely defined, and lack bi-invariance (invariance to both world and body frame variations). To address these issues, we propose the novel \textit{Bi-Invariant Local Trajectory-Shape Similarity} (BILTS) measure. Compared to other measures, the BILTS measure uniquely offers bi-invariance, boundedness, and third-order shape identity. Aimed at practical implementations, we devised a discretized and regularized version of the BILTS measure which shows exceptional robustness to singularities. This is demonstrated through rigorous recognition experiments using multiple datasets. On average, BILTS attained the highest recognition ratio and least sensitivity to contextual variations compared to other invariant object motion similarity measures. We believe that the BILTS measure is a valuable tool for recognizing motions performed in diverse contexts and has potential in other applications, including the recognition, segmentation, and adaptation of both motion and force trajectories.

This ...

This work has been submitted as a regular research paper for consideration in the Journal of Intelligent & Robotic Systems. The content in this preprint is identical to the version submitted for peer review, except for formatting differences required by the journal

ASTRA: A Scene-aware TRAnsformer-based model for trajectory prediction 2025-01-16
Show

We present ASTRA (A} Scene-aware TRAnsformer-based model for trajectory prediction), a light-weight pedestrian trajectory forecasting model that integrates the scene context, spatial dynamics, social inter-agent interactions and temporal progressions for precise forecasting. We utilised a U-Net-based feature extractor, via its latent vector representation, to capture scene representations and a graph-aware transformer encoder for capturing social interactions. These components are integrated to learn an agent-scene aware embedding, enabling the model to learn spatial dynamics and forecast the future trajectory of pedestrians. The model is designed to produce both deterministic and stochastic outcomes, with the stochastic predictions being generated by incorporating a Conditional Variational Auto-Encoder (CVAE). ASTRA also proposes a simple yet effective weighted penalty loss function, which helps to yield predictions that outperform a wide array of state-of-the-art deterministic and generative models. ASTRA demonstrates an average improvement of 27%/10% in deterministic/stochastic settings on the ETH-UCY dataset, and 26% improvement on the PIE dataset, respectively, along with seven times fewer parameters than the existing state-of-the-art model (see Figure 1). Additionally, the model's versatility allows it to generalize across different perspectives, such as Bird's Eye View (BEV) and Ego-Vehicle View (EVV).

Real-Time Generation of Near-Minimum-Energy Trajectories via Constraint-Informed Residual Learning 2025-01-16
Show

Industrial robotics demands significant energy to operate, making energy-reduction methodologies increasingly important. Strategies for planning minimum-energy trajectories typically involve solving nonlinear optimal control problems (OCPs), which rarely cope with real-time requirements. In this paper, we propose a paradigm for generating near minimum-energy trajectories for manipulators by learning from optimal solutions. Our paradigm leverages a residual learning approach, which embeds boundary conditions while focusing on learning only the adjustments needed to steer a standard solution to an optimal one. Compared to a computationally expensive OCP-based planner, our paradigm achieves 87.3% of the performance near the training dataset and 50.8% far from the dataset, while being two to three orders of magnitude faster.

Control Barrier Function-Based Safety Filters: Characterization of Undesired Equilibria, Unbounded Trajectories, and Limit Cycles 2025-01-16
Show

This paper focuses on safety filters designed based on Control Barrier Functions (CBFs): these are modifications of a nominal stabilizing controller typically utilized in safety-critical control applications to render a given subset of states forward invariant. The paper investigates the dynamical properties of the closed-loop systems, with a focus on characterizing undesirable behaviors that may emerge due to the use of CBF-based filters. These undesirable behaviors include unbounded trajectories, limit cycles, and undesired equilibria, which can be locally stable and even form a continuum. Our analysis offer the following contributions: (i) conditions under which trajectories remain bounded and (ii) conditions under which limit cycles do not exist; (iii) we show that undesired equilibria can be characterized by solving an algebraic equation, and (iv) we provide examples that show that asymptotically stable undesired equilibria can exist for a large class of nominal controllers and design parameters of the safety filter (even for convex safe sets). Further, for the specific class of planar systems, (v) we provide explicit formulas for the total number of undesired equilibria and the proportion of saddle points and asymptotically stable equilibria, and (vi) in the case of linear planar systems, we present an exhaustive analysis of their global stability properties. Examples throughout the paper illustrate the results.

Estimation-Aware Trajectory Optimization with Set-Valued Measurement Uncertainties 2025-01-15
Show

In this paper, we present an optimization-based framework for generating estimation-aware trajectories in scenarios where measurement (output) uncertainties are state-dependent and set-valued. The framework leverages the concept of regularity for set-valued output maps. Specifically, we demonstrate that, for output-regular maps, one can utilize a set-valued observability measure that is concave with respect to finite-horizon state trajectories. By maximizing this measure, optimized estimation-aware trajectories can be designed for a broad class of systems, including those with locally linearized dynamics. To illustrate the effectiveness of the proposed approach, we provide a representative example in the context of trajectory planning for vision-based estimation. We present an estimation-aware trajectory for an uncooperative target-tracking problem that uses a machine learning (ML)-based estimation module on an ego-satellite.

25 pages, 5 figures
MGF: Mixed Gaussian Flow for Diverse Trajectory Prediction 2025-01-15
Show

To predict future trajectories, the normalizing flow with a standard Gaussian prior suffers from weak diversity. The ineffectiveness comes from the conflict between the fact of asymmetric and multi-modal distribution of likely outcomes and symmetric and single-modal original distribution and supervision losses. Instead, we propose constructing a mixed Gaussian prior for a normalizing flow model for trajectory prediction. The prior is constructed by analyzing the trajectory patterns in the training samples without requiring extra annotations while showing better expressiveness and being multi-modal and asymmetric. Besides diversity, it also provides better controllability for probabilistic trajectory generation. We name our method Mixed Gaussian Flow (MGF). It achieves state-of-the-art performance in the evaluation of both trajectory alignment and diversity on the popular UCY/ETH and SDD datasets. Code is available at https://github.com/mulplue/MGF.

Accep...

Accepted by Neurips 2024. Code: https://github.com/mulplue/MGF

Low-Thrust Many-Revolution Trajectory Design Under Operational Uncertainties for DESTINY+ Mission 2025-01-15
Show

DESTINY+ is a planned JAXA medium-class Epsilon mission from Earth to deep space using a low-thrust, many-revolution orbit. Such a trajectory design is a challenging problem not only for trajectory design but also for flight operations, and in particular, it is essential to evaluate the impact of operational uncertainties to ensure mission success. In this study, we design the low-thrust trajectory from Earth orbit to a lunar transfer orbit by differential dynamic programming using the Sundman transformation. The results of Monte Carlo simulations with operational uncertainties confirm that the spacecraft can be successfully guided to the lunar transfer orbit by using the feedback control law of differential dynamic programming in the angular domain.

Prese...

Presented at 2023 AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT. Paper AAS23-222

Predicting 4D Hand Trajectory from Monocular Videos 2025-01-14
Show

We present HaPTIC, an approach that infers coherent 4D hand trajectories from monocular videos. Current video-based hand pose reconstruction methods primarily focus on improving frame-wise 3D pose using adjacent frames rather than studying consistent 4D hand trajectories in space. Despite the additional temporal cues, they generally underperform compared to image-based methods due to the scarcity of annotated video data. To address these issues, we repurpose a state-of-the-art image-based transformer to take in multiple frames and directly predict a coherent trajectory. We introduce two types of lightweight attention layers: cross-view self-attention to fuse temporal information, and global cross-attention to bring in larger spatial context. Our method infers 4D hand trajectories similar to the ground truth while maintaining strong 2D reprojection alignment. We apply the method to both egocentric and allocentric videos. It significantly outperforms existing methods in global trajectory accuracy while being comparable to the state-of-the-art in single-image pose estimation. Project website: https://judyye.github.io/haptic-www

Pedestrian Trajectory Prediction Based on Social Interactions Learning With Random Weights 2025-01-13
Show

Pedestrian trajectory prediction is a critical technology in the evolution of self-driving cars toward complete artificial intelligence. Over recent years, focusing on the trajectories of pedestrians to model their social interactions has surged with great interest in more accurate trajectory predictions. However, existing methods for modeling pedestrian social interactions rely on pre-defined rules, struggling to capture non-explicit social interactions. In this work, we propose a novel framework named DTGAN, which extends the application of Generative Adversarial Networks (GANs) to graph sequence data, with the primary objective of automatically capturing implicit social interactions and achieving precise predictions of pedestrian trajectory. DTGAN innovatively incorporates random weights within each graph to eliminate the need for pre-defined interaction rules. We further enhance the performance of DTGAN by exploring diverse task loss functions during adversarial training, which yields improvements of 16.7% and 39.3% on metrics ADE and FDE, respectively. The effectiveness and accuracy of our framework are verified on two public datasets. The experimental results show that our proposed DTGAN achieves superior performance and is well able to understand pedestrians' intentions.

13 pa...

13 pages,7 figures,Accepted to IEEE Transactions on Multimedia (TMM)

Computing Safety Margins of Parameterized Nonlinear Systems for Vulnerability Assessment via Trajectory Sensitivities 2025-01-13
Show

Physical systems experience nonlinear disturbances which have the potential to disrupt desired behavior. For a particular disturbance, whether or not the system recovers from the disturbance to a desired stable equilibrium point depends on system parameter values, which are typically uncertain and time-varying. Therefore, to quantify proximity to vulnerability we define the safety margin to be the smallest change in parameter values from a nominal value such that the system will no longer be able to recover from the disturbance. Safety margins are valuable but challenging to compute as related methods, such as those for robust region of attraction estimation, are often either overly conservative or computationally intractable for high dimensional systems. Recently, we developed algorithms to compute safety margins efficiently and non-conservatively by exploiting the large sensitivity of the system trajectory near the region of attraction boundary to small perturbations. Although these algorithms have enjoyed empirical success, they lack theoretical guarantees that would ensure their generalizability. This work develops a novel characterization of safety margins in terms of trajectory sensitivities, and uses this to derive well-posedness and convergence guarantees for these algorithms, enabling their generalizability and successful application to a large class of nonlinear systems.

16 pages
Global Search for Optimal Low Thrust Spacecraft Trajectories using Diffusion Models and the Indirect Method 2025-01-13
Show

Long time-duration low-thrust nonlinear optimal spacecraft trajectory global search is a computationally and time expensive problem characterized by clustering patterns in locally optimal solutions. During preliminary mission design, mission parameters are subject to frequent changes, necessitating that trajectory designers efficiently generate high-quality control solutions for these new scenarios. Generative machine learning models can be trained to learn how the solution structure varies with respect to a conditional parameter, thereby accelerating the global search for missions with updated parameters. In this work, state-of-the-art diffusion models are integrated with the indirect approach for trajectory optimization within a global search framework. This framework is tested on two low-thrust transfers of different complexity in the circular restricted three-body problem. By generating and analyzing a training data set, we develop mathematical relations and techniques to understand the complex structures in the costate domain of locally optimal solutions for these problems. A diffusion model is trained on this data and successfully accelerates the global search for both problems. The model predicts how the costate solution structure changes, based on the maximum spacecraft thrust magnitude. Warm-starting a numerical solver with diffusion model samples for the costates at the initial time increases the number of solutions generated per minute for problems with unseen thrust magnitudes by one to two orders of magnitude in comparison to samples from a uniform distribution and from an adjoint control transformation.

Efficient Estimation of Relaxed Model Parameters for Robust UAV Trajectory Optimization 2025-01-13
Show

Online trajectory optimization and optimal control methods are crucial for enabling sustainable unmanned aerial vehicle (UAV) services, such as agriculture, environmental monitoring, and transportation, where available actuation and energy are limited. However, optimal controllers are highly sensitive to model mismatch, which can occur due to loaded equipment, packages to be delivered, or pre-existing variability in fundamental structural and thrust-related parameters. To circumvent this problem, optimal controllers can be paired with parameter estimators to improve their trajectory planning performance and perform adaptive control. However, UAV platforms are limited in terms of onboard processing power, oftentimes making nonlinear parameter estimation too computationally expensive to consider. To address these issues, we propose a relaxed, affine-in-parameters multirotor model along with an efficient optimal parameter estimator. We convexify the nominal Moving Horizon Parameter Estimation (MHPE) problem into a linear-quadratic form (LQ-MHPE) via an affine-in-parameter relaxation on the nonlinear dynamics, resulting in fast quadratic programs (QPs) that facilitate adaptive Model Predictve Control (MPC) in real time. We compare this approach to the equivalent nonlinear estimator in Monte Carlo simulations, demonstrating a decrease in average solve time and trajectory optimality cost by 98.2% and 23.9-56.2%, respectively.

8 pag...

8 pages, 5 figures, to be published in IEEE Sustech 2025

Graph Neural Networks

Title Date Abstract Comment
RelGNN: Composite Message Passing for Relational Deep Learning 2025-02-10
Show

Predictive tasks on relational databases are critical in real-world applications spanning e-commerce, healthcare, and social media. To address these tasks effectively, Relational Deep Learning (RDL) encodes relational data as graphs, enabling Graph Neural Networks (GNNs) to exploit relational structures for improved predictions. However, existing heterogeneous GNNs often overlook the intrinsic structural properties of relational databases, leading to modeling inefficiencies. Here we introduce RelGNN, a novel GNN framework specifically designed to capture the unique characteristics of relational databases. At the core of our approach is the introduction of atomic routes, which are sequences of nodes forming high-order tripartite structures. Building upon these atomic routes, RelGNN designs new composite message passing mechanisms between heterogeneous nodes, allowing direct single-hop interactions between them. This approach avoids redundant aggregations and mitigates information entanglement, ultimately leading to more efficient and accurate predictive modeling. RelGNN is evaluated on 30 diverse real-world tasks from RelBench (Fey et al., 2024), and consistently achieves state-of-the-art accuracy with up to 25% improvement.

14 pages
Adaptive Reconstruction for Graph Neural Networks 2025-02-10
Show

Graph Neural Networks (GNNs) have become fundamental in semi-supervised learning for graph representation, leveraging their ability to capture complex node relationships. A recent trend in GNN research focuses on \textbf{adaptive k-hop structure learning}, moving beyond fixed-hop aggregation to more flexible and dynamic neighborhood selection. While GAMLP \cite{Zhang_2022} employs separate MLP layers for each k-hop domain and ImprovingTE \cite{Yao2023ImprovingTE} enhances this by injecting contextualized substructure information, these methods still rely heavily on predefined sampling strategies, which may limit their ability to generalize and maintain stable accuracy. To address these limitations, we propose an \textbf{adaptive reconstruction framework} that dynamically refines k-hop structure learning. Inspired by "coreset selection" \cite{guo2022deepcore}, our approach adaptively \textbf{reconstructs} node neighborhoods to optimize message passing, ensuring more \textbf{effective and context-aware information flow} across the graph. To further enhance structural robustness, we introduce two key modules: the \textbf{Distance Recomputator} and the \textbf{Topology Reconstructor} (\textcolor{blue}{DRTR}). The Distance Recomputator \textbf{reassesses and recalibrates} node distances based on adaptive graph properties, leading to \textbf{improved node embeddings} that better reflect latent relationships. Meanwhile, the Topology Reconstructor \textbf{dynamically refines local graph structures}, enabling the model to \textbf{adapt to evolving graph topologies} and mitigate the impact of noise and mislabeled data. Empirical evaluations demonstrate that our \textbf{adaptive reconstruction framework} achieves \textbf{significant improvements} over existing k-hop-based models, providing more \textbf{stable and accurate} performance in various graph learning benchmarks.

Better Fair than Sorry: Adversarial Missing Data Imputation for Fair GNNs 2025-02-10
Show

Graph Neural Networks (GNNs) have achieved state-of-the-art results in many relevant tasks where decisions might disproportionately impact specific communities. However, existing work on fair GNNs often assumes that either protected attributes are fully observed or that the missing protected attribute imputation is fair. In practice, biases in the imputation will propagate to the model outcomes, leading them to overestimate the fairness of their predictions. We address this challenge by proposing Better Fair than Sorry (BFtS), a fair missing data imputation model for protected attributes. The key design principle behind BFtS is that imputations should approximate the worst-case scenario for fairness -- i.e. when optimizing fairness is the hardest. We implement this idea using a 3-player adversarial scheme where two adversaries collaborate against a GNN-based classifier, and the classifier minimizes the maximum bias. Experiments using synthetic and real datasets show that BFtS often achieves a better fairness x accuracy trade-off than existing alternatives.

Arrhythmia Classification Using Graph Neural Networks Based on Correlation Matrix 2025-02-10
Show

With the advancements in graph neural network, there has been increasing interest in applying this network to ECG signal analysis. In this study, we generated an adjacency matrix using correlation matrix of extracted features and applied a graph neural network to classify arrhythmias. The proposed model was compared with existing approaches from the literature. The results demonstrated that precision and recall for all arrhythmia classes exceeded 50%, suggesting that this method can be considered an approach for arrhythmia classification.

Corrected typos
Prompt-Driven Continual Graph Learning 2025-02-10
Show

Continual Graph Learning (CGL), which aims to accommodate new tasks over evolving graph data without forgetting prior knowledge, is garnering significant research interest. Mainstream solutions adopt the memory replay-based idea, ie, caching representative data from earlier tasks for retraining the graph model. However, this strategy struggles with scalability issues for constantly evolving graphs and raises concerns regarding data privacy. Inspired by recent advancements in the prompt-based learning paradigm, this paper introduces a novel prompt-driven continual graph learning (PROMPTCGL) framework, which learns a separate prompt for each incoming task and maintains the underlying graph neural network model fixed. In this way, PROMPTCGL naturally avoids catastrophic forgetting of knowledge from previous tasks. More specifically, we propose hierarchical prompting to instruct the model from both feature- and topology-level to fully address the variability of task graphs in dynamic continual learning. Additionally, we develop a personalized prompt generator to generate tailored prompts for each graph node while minimizing the number of prompts needed, leading to constant memory consumption regardless of the graph scale. Extensive experiments on four benchmarks show that PROMPTCGL achieves superior performance against existing CGL approaches while significantly reducing memory consumption. Our code is available at https://github.com/QiWang98/PromptCGL.

12 pages, 7figures
IceBerg: Debiased Self-Training for Class-Imbalanced Node Classification 2025-02-10
Show

Graph Neural Networks (GNNs) have achieved great success in dealing with non-Euclidean graph-structured data and have been widely deployed in many real-world applications. However, their effectiveness is often jeopardized under class-imbalanced training sets. Most existing studies have analyzed class-imbalanced node classification from a supervised learning perspective, but they do not fully utilize the large number of unlabeled nodes in semi-supervised scenarios. We claim that the supervised signal is just the tip of the iceberg and a large number of unlabeled nodes have not yet been effectively utilized. In this work, we propose IceBerg, a debiased self-training framework to address the class-imbalanced and few-shot challenges for GNNs at the same time. Specifically, to figure out the Matthew effect and label distribution shift in self-training, we propose Double Balancing, which can largely improve the performance of existing baselines with just a few lines of code as a simple plug-and-play module. Secondly, to enhance the long-range propagation capability of GNNs, we disentangle the propagation and transformation operations of GNNs. Therefore, the weak supervision signals can propagate more effectively to address the few-shot issue. In summary, we find that leveraging unlabeled nodes can significantly enhance the performance of GNNs in class-imbalanced and few-shot scenarios, and even small, surgical modifications can lead to substantial performance improvements. Systematic experiments on benchmark datasets show that our method can deliver considerable performance gain over existing class-imbalanced node classification baselines. Additionally, due to IceBerg's outstanding ability to leverage unsupervised signals, it also achieves state-of-the-art results in few-shot node classification scenarios. The code of IceBerg is available at: https://github.com/ZhixunLEE/IceBerg.

Accep...

Accepted by TheWebConf (WWW) 2025

DeepGate4: Efficient and Effective Representation Learning for Circuit Design at Scale 2025-02-10
Show

Circuit representation learning has become pivotal in electronic design automation, enabling critical tasks such as testability analysis, logic reasoning, power estimation, and SAT solving. However, existing models face significant challenges in scaling to large circuits due to limitations like over-squashing in graph neural networks and the quadratic complexity of transformer-based models. To address these issues, we introduce DeepGate4, a scalable and efficient graph transformer specifically designed for large-scale circuits. DeepGate4 incorporates several key innovations: (1) an update strategy tailored for circuit graphs, which reduce memory complexity to sub-linear and is adaptable to any graph transformer; (2) a GAT-based sparse transformer with global and local structural encodings for AIGs; and (3) an inference acceleration CUDA kernel that fully exploit the unique sparsity patterns of AIGs. Our extensive experiments on the ITC99 and EPFL benchmarks show that DeepGate4 significantly surpasses state-of-the-art methods, achieving 15.5% and 31.1% performance improvements over the next-best models. Furthermore, the Fused-DeepGate4 variant reduces runtime by 35.1% and memory usage by 46.8%, making it highly efficient for large-scale circuit analysis. These results demonstrate the potential of DeepGate4 to handle complex EDA tasks while offering superior scalability and efficiency.

Graph Neural Networks at a Fraction 2025-02-10
Show

Graph Neural Networks (GNNs) have emerged as powerful tools for learning representations of graph-structured data. In addition to real-valued GNNs, quaternion GNNs also perform well on tasks on graph-structured data. With the aim of reducing the energy footprint, we reduce the model size while maintaining accuracy comparable to that of the original-sized GNNs. This paper introduces Quaternion Message Passing Neural Networks (QMPNNs), a framework that leverages quaternion space to compute node representations. Our approach offers a generalizable method for incorporating quaternion representations into GNN architectures at one-fourth of the original parameter count. Furthermore, we present a novel perspective on Graph Lottery Tickets, redefining their applicability within the context of GNNs and QMPNNs. We specifically aim to find the initialization lottery from the subnetwork of the GNNs that can achieve comparable performance to the original GNN upon training. Thereby reducing the trainable model parameters even further. To validate the effectiveness of our proposed QMPNN framework and LTH for both GNNs and QMPNNs, we evaluate their performance on real-world datasets across three fundamental graph-based tasks: node classification, link prediction, and graph classification.

12 pa...

12 pages, 2 figures, accepted at PAKKD 2025

Epidemiology-informed Network for Robust Rumor Detection 2025-02-10
Show

The rapid spread of rumors on social media has posed significant challenges to maintaining public trust and information integrity. Since an information cascade process is essentially a propagation tree, recent rumor detection models leverage graph neural networks to additionally capture information propagation patterns, thus outperforming text-only solutions. Given the variations in topics and social impact of the root node, different source information naturally has distinct outreach capabilities, resulting in different heights of propagation trees. This variation, however, impedes the data-driven design of existing graph-based rumor detectors. Given a shallow propagation tree with limited interactions, it is unlikely for graph-based approaches to capture sufficient cascading patterns, questioning their ability to handle less popular news or early detection needs. In contrast, a deep propagation tree is prone to noisy user responses, and this can in turn obfuscate the predictions. In this paper, we propose a novel Epidemiology-informed Network (EIN) that integrates epidemiological knowledge to enhance performance by overcoming data-driven methods sensitivity to data quality. Meanwhile, to adapt epidemiology theory to rumor detection, it is expected that each users stance toward the source information will be annotated. To bypass the costly and time-consuming human labeling process, we take advantage of large language models to generate stance labels, facilitating optimization objectives for learning epidemiology-informed representations. Our experimental results demonstrate that the proposed EIN not only outperforms state-of-the-art methods on real-world datasets but also exhibits enhanced robustness across varying tree depths.

Norm Augmented Graph AutoEncoders for Link Prediction 2025-02-09
Show

Link Prediction (LP) is a crucial problem in graph-structured data. Graph Neural Networks (GNNs) have gained prominence in LP, with Graph AutoEncoders (GAEs) being a notable representation. However, our empirical findings reveal that GAEs' LP performance suffers heavily from the long-tailed node degree distribution, i.e., low-degree nodes tend to exhibit inferior LP performance compared to high-degree nodes. \emph{What causes this degree-related bias, and how can it be mitigated?} In this study, we demonstrate that the norm of node embeddings learned by GAEs exhibits variation among nodes with different degrees, underscoring its central significance in influencing the final performance of LP. Specifically, embeddings with larger norms tend to guide the decoder towards predicting higher scores for positive links and lower scores for negative links, thereby contributing to superior performance. This observation motivates us to improve GAEs' LP performance on low-degree nodes by increasing their embedding norms, which can be implemented simply yet effectively by introducing additional self-loops into the training objective for low-degree nodes. This norm augmentation strategy can be seamlessly integrated into existing GAE methods with light computational cost. Extensive experiments on various datasets and GAE methods show the superior performance of norm-augmented GAEs.

Accep...

Accepted by ICASSP 2025

Learning Accurate, Efficient, and Interpretable MLPs on Multiplex Graphs via Node-wise Multi-View Ensemble Distillation 2025-02-09
Show

Multiplex graphs, with multiple edge types (graph views) among common nodes, provide richer structural semantics and better modeling capabilities. Multiplex Graph Neural Networks (MGNNs), typically comprising view-specific GNNs and a multi-view integration layer, have achieved advanced performance in various downstream tasks. However, their reliance on neighborhood aggregation poses challenges for deployment in latency-sensitive applications. Motivated by recent GNN-to-MLP knowledge distillation frameworks, we propose Multiplex Graph-Free Neural Networks (MGFNN and MGFNN+) to combine MGNNs' superior performance and MLPs' efficient inference via knowledge distillation. MGFNN directly trains student MLPs with node features as input and soft labels from teacher MGNNs as targets. MGFNN+ further employs a low-rank approximation-based reparameterization to learn node-wise coefficients, enabling adaptive knowledge ensemble from each view-specific GNN. This node-wise multi-view ensemble distillation strategy allows student MLPs to learn more informative multiplex semantic knowledge for different nodes. Experiments show that MGFNNs achieve average accuracy improvements of about 10% over vanilla MLPs and perform comparably or even better to teacher MGNNs (accurate); MGFNNs achieve a 35.40$\times$-89.14$\times$ speedup in inference over MGNNs (efficient); MGFNN+ adaptively assigns different coefficients for multi-view ensemble distillation regarding different nodes (interpretable).

Accep...

Accepted by DASFAA 2025

LegalSeg: Unlocking the Structure of Indian Legal Judgments Through Rhetorical Role Classification 2025-02-09
Show

In this paper, we address the task of semantic segmentation of legal documents through rhetorical role classification, with a focus on Indian legal judgments. We introduce LegalSeg, the largest annotated dataset for this task, comprising over 7,000 documents and 1.4 million sentences, labeled with 7 rhetorical roles. To benchmark performance, we evaluate multiple state-of-the-art models, including Hierarchical BiLSTM-CRF, TransformerOverInLegalBERT (ToInLegalBERT), Graph Neural Networks (GNNs), and Role-Aware Transformers, alongside an exploratory RhetoricLLaMA, an instruction-tuned large language model. Our results demonstrate that models incorporating broader context, structural relationships, and sequential sentence information outperform those relying solely on sentence-level features. Additionally, we conducted experiments using surrounding context and predicted or actual labels of neighboring sentences to assess their impact on classification accuracy. Despite these advancements, challenges persist in distinguishing between closely related roles and addressing class imbalance. Our work underscores the potential of advanced techniques for improving legal document understanding and sets a strong foundation for future research in legal NLP.

Accep...

Accepted on NAACL 2025

GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers 2025-02-09
Show

Graph Transformers (GTs) have demonstrated remarkable performance in graph representation learning over popular graph neural networks (GNNs). However, self--attention, the core module of GTs, preserves only low-frequency signals in graph features, leading to ineffectiveness in capturing other important signals like high-frequency ones. Some recent GT models help alleviate this issue, but their flexibility and expressiveness are still limited since the filters they learn are fixed on predefined graph spectrum or order. To tackle this challenge, we propose a Graph Fourier Kolmogorov-Arnold Transformer (GrokFormer), a novel GT model that learns highly expressive spectral filters with adaptive graph spectrum and order through a Fourier series modeling over learnable activation functions. We demonstrate theoretically and empirically that the proposed GrokFormer filter offers better expressiveness than other spectral methods. Comprehensive experiments on 10 real-world node classification datasets across various domains, scales, and graph properties, as well as 5 graph classification datasets, show that GrokFormer outperforms state-of-the-art GTs and GNNs. Our code is available at https://github.com/GGA23/GrokFormer

17 pa...

17 pages, 7 figures, 9 tables

GOLD: Graph Out-of-Distribution Detection via Implicit Adversarial Latent Generation 2025-02-09
Show

Despite graph neural networks' (GNNs) great success in modelling graph-structured data, out-of-distribution (OOD) test instances still pose a great challenge for current GNNs. One of the most effective techniques to detect OOD nodes is to expose the detector model with an additional OOD node-set, yet the extra OOD instances are often difficult to obtain in practice. Recent methods for image data address this problem using OOD data synthesis, typically relying on pre-trained generative models like Stable Diffusion. However, these approaches require vast amounts of additional data, as well as one-for-all pre-trained generative models, which are not available for graph data. Therefore, we propose the GOLD framework for graph OOD detection, an implicit adversarial learning pipeline with synthetic OOD exposure without pre-trained models. The implicit adversarial training process employs a novel alternating optimisation framework by training: (1) a latent generative model to regularly imitate the in-distribution (ID) embeddings from an evolving GNN, and (2) a GNN encoder and an OOD detector to accurately classify ID data while increasing the energy divergence between the ID embeddings and the generative model's synthetic embeddings. This novel approach implicitly transforms the synthetic embeddings into pseudo-OOD instances relative to the ID data, effectively simulating exposure to OOD scenarios without auxiliary data. Extensive OOD detection experiments are conducted on five benchmark graph datasets, verifying the superior performance of GOLD without using real OOD data compared with the state-of-the-art OOD exposure and non-exposure baselines.

ICLR25
Rethinking Link Prediction for Directed Graphs 2025-02-08
Show

Link prediction for directed graphs is a crucial task with diverse real-world applications. Recent advances in embedding methods and Graph Neural Networks (GNNs) have shown promising improvements. However, these methods often lack a thorough analysis of embedding expressiveness and suffer from ineffective benchmarks for a fair evaluation. In this paper, we propose a unified framework to assess the expressiveness of existing methods, highlighting the impact of dual embeddings and decoder design on performance. To address limitations in current experimental setups, we introduce DirLinkBench, a robust new benchmark with comprehensive coverage and standardized evaluation. The results show that current methods struggle to achieve strong performance on the new benchmark, while DiGAE outperforms others overall. We further revisit DiGAE theoretically, showing its graph convolution aligns with GCN on an undirected bipartite graph. Inspired by these insights, we propose a novel spectral directed graph auto-encoder SDGAE that achieves SOTA results on DirLinkBench. Finally, we analyze key factors influencing directed link prediction and highlight open challenges.

30 pages
Graph Neural Networks for Efficient AC Power Flow Prediction in Power Grids 2025-02-08
Show

This paper proposes a novel approach using Graph Neural Networks (GNNs) to solve the AC Power Flow problem in power grids. AC OPF is essential for minimizing generation costs while meeting the operational constraints of the grid. Traditional solvers struggle with scalability, especially in large systems with renewable energy sources. Our approach models the power grid as a graph, where buses are nodes and transmission lines are edges. We explore different GNN architectures, including GCN, GAT, SAGEConv, and GraphConv to predict AC power flow solutions efficiently. Our experiments on IEEE test systems show that GNNs can accurately predict power flow solutions and scale to larger systems, outperforming traditional solvers in terms of computation time. This work highlights the potential of GNNs for real-time power grid management, with future plans to apply the model to even larger grid systems.

12 pa...

12 pages, 6 figures, NeurIPS 2025, https://github.com/Amirtalebi83/GNN-OptimalPowerFlow

Robust Deep Signed Graph Clustering via Weak Balance Theory 2025-02-08
Show

Signed graph clustering is a critical technique for discovering community structures in graphs that exhibit both positive and negative relationships. We have identified two significant challenges in this domain: i) existing signed spectral methods are highly vulnerable to noise, which is prevalent in real-world scenarios; ii) the guiding principle ``an enemy of my enemy is my friend'', rooted in \textit{Social Balance Theory}, often narrows or disrupts cluster boundaries in mainstream signed graph neural networks. Addressing these challenges, we propose the \underline{D}eep \underline{S}igned \underline{G}raph \underline{C}lustering framework (DSGC), which leverages \textit{Weak Balance Theory} to enhance preprocessing and encoding for robust representation learning. First, DSGC introduces Violation Sign-Refine to denoise the signed network by correcting noisy edges with high-order neighbor information. Subsequently, Density-based Augmentation enhances semantic structures by adding positive edges within clusters and negative edges across clusters, following \textit{Weak Balance} principles. The framework then utilizes \textit{Weak Balance} principles to develop clustering-oriented signed neural networks to broaden cluster boundaries by emphasizing distinctions between negatively linked nodes. Finally, DSGC optimizes clustering assignments by minimizing a regularized clustering loss. Comprehensive experiments on synthetic and real-world datasets demonstrate DSGC consistently outperforms all baselines, establishing a new benchmark in signed graph clustering.

accep...

accepted by WWW25 conference

Block Graph Neural Networks for tumor heterogeneity prediction 2025-02-08
Show

Accurate tumor classification is essential for selecting effective treatments, but current methods have limitations. Standard tumor grading, which categorizes tumors based on cell differentiation, is not recommended as a stand-alone procedure, as some well-differentiated tumors can be malignant. Tumor heterogeneity assessment via single-cell sequencing offers profound insights but can be costly and may still require significant manual intervention. Many existing statistical machine learning methods for tumor data still require complex pre-processing of MRI and histopathological data. In this paper, we propose to build on a mathematical model that simulates tumor evolution (O.{z}a'{n}ski (2017)) and generate artificial datasets for tumor classification. Tumor heterogeneity is estimated using normalized entropy, with a threshold to classify tumors as having high or low heterogeneity. Our contributions are threefold: (1) the cut and graph generation processes from the artificial data, (2) the design of tumor features, and (3) the construction of Block Graph Neural Networks (BGNN), a Graph Neural Network-based approach to predict tumor heterogeneity. The experimental results reveal that the combination of the proposed features and models yields excellent results on artificially generated data ($89.67%$ accuracy on the test data). In particular, in alignment with the emerging trends in AI-assisted grading and spatial transcriptomics, our results suggest that enriching traditional grading methods with birth (e.g., Ki-67 proliferation index) and death markers can improve heterogeneity prediction and enhance tumor classification.

27 pages, 8 figures
LRA-GNN: Latent Relation-Aware Graph Neural Network with Initial and Dynamic Residual for Facial Age Estimation 2025-02-08
Show

Face information is mainly concentrated among facial key points, and frontier research has begun to use graph neural networks to segment faces into patches as nodes to model complex face representations. However, these methods construct node-to-node relations based on similarity thresholds, so there is a problem that some latent relations are missing. These latent relations are crucial for deep semantic representation of face aging. In this novel, we propose a new Latent Relation-Aware Graph Neural Network with Initial and Dynamic Residual (LRA-GNN) to achieve robust and comprehensive facial representation. Specifically, we first construct an initial graph utilizing facial key points as prior knowledge, and then a random walk strategy is employed to the initial graph for obtaining the global structure, both of which together guide the subsequent effective exploration and comprehensive representation. Then LRA-GNN leverages the multi-attention mechanism to capture the latent relations and generates a set of fully connected graphs containing rich facial information and complete structure based on the aforementioned guidance. To avoid over-smoothing issues for deep feature extraction on the fully connected graphs, the deep residual graph convolutional networks are carefully designed, which fuse adaptive initial residuals and dynamic developmental residuals to ensure the consistency and diversity of information. Finally, to improve the estimation accuracy and generalization ability, progressive reinforcement learning is proposed to optimize the ensemble classification regressor. Our proposed framework surpasses the state-of-the-art baselines on several age estimation benchmarks, demonstrating its strength and effectiveness.

Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints 2025-02-08
Show

In-context learning (ICL) effectively conditions large language models (LLMs) for molecular tasks, such as property prediction and molecule captioning, by embedding carefully selected demonstration examples into the input prompt. This approach avoids the computational overhead of extensive pertaining and fine-tuning. However, current prompt retrieval methods for molecular tasks have relied on molecule feature similarity, such as Morgan fingerprints, which do not adequately capture the global molecular and atom-binding relationships. As a result, these methods fail to represent the full complexity of molecular structures during inference. Moreover, small-to-medium-sized LLMs, which offer simpler deployment requirements in specialized systems, have remained largely unexplored in the molecular ICL literature. To address these gaps, we propose a self-supervised learning technique, GAMIC (Graph-Aligned Molecular In-Context learning, which aligns global molecular structures, represented by graph neural networks (GNNs), with textual captions (descriptions) while leveraging local feature similarity through Morgan fingerprints. In addition, we introduce a Maximum Marginal Relevance (MMR) based diversity heuristic during retrieval to optimize input prompt demonstration samples. Our experimental findings using diverse benchmark datasets show GAMIC outperforms simple Morgan-based ICL retrieval methods across all tasks by up to 45%.

Estimating Voltage Drop: Models, Features and Data Representation Towards a Neural Surrogate 2025-02-07
Show

Accurate estimation of voltage drop (IR drop) in modern Application-Specific Integrated Circuits (ASICs) is highly time and resource demanding, due to the growing complexity and the transistor density in recent technology nodes. To mitigate this challenge, we investigate how Machine Learning (ML) techniques, including Extreme Gradient Boosting (XGBoost), Convolutional Neural Network (CNN), and Graph Neural Network (GNN) can aid in reducing the computational effort and implicitly the time required to estimate the IR drop in Integrated Circuits (ICs). Traditional methods, including commercial tools, require considerable time to produce accurate approximations, especially for complicated designs with numerous transistors. ML algorithms, on the other hand, are explored as an alternative solution to offer quick and precise IR drop estimation, but in considerably less time. Our approach leverages ASICs' electrical, timing, and physical to train ML models, ensuring adaptability across diverse designs with minimal adjustments. Experimental results underscore the superiority of ML models over commercial tools, greatly enhancing prediction speed. Particularly, GNNs exhibit promising performance with minimal prediction errors in voltage drop estimation. The incorporation of GNNs marks a groundbreaking advancement in accurate IR drop prediction. This study illustrates the effectiveness of ML algorithms in precisely estimating IR drop and optimizing ASIC sign-off. Utilizing ML models leads to expedited predictions, reducing calculation time and improving energy efficiency, thereby reducing environmental impact through optimized power circuits.

Predicting Steady-State Behavior in Complex Networks with Graph Neural Networks 2025-02-07
Show

In complex systems, information propagation can be defined as diffused or delocalized, weakly localized, and strongly localized. This study investigates the application of graph neural network models to learn the behavior of a linear dynamical system on networks. A graph convolution and attention-based neural network framework has been developed to identify the steady-state behavior of the linear dynamical system. We reveal that our trained model distinguishes the different states with high accuracy. Furthermore, we have evaluated model performance with real-world data. In addition, to understand the explainability of our model, we provide an analytical derivation for the forward and backward propagation of our framework.

13 pages, 7 figures
Graph Contrastive Learning for Connectome Classification 2025-02-07
Show

With recent advancements in non-invasive techniques for measuring brain activity, such as magnetic resonance imaging (MRI), the study of structural and functional brain networks through graph signal processing (GSP) has gained notable prominence. GSP stands as a key tool in unraveling the interplay between the brain's function and structure, enabling the analysis of graphs defined by the connections between regions of interest -- referred to as connectomes in this context. Our work represents a further step in this direction by exploring supervised contrastive learning methods within the realm of graph representation learning. The main objective of this approach is to generate subject-level (i.e., graph-level) vector representations that bring together subjects sharing the same label while separating those with different labels. These connectome embeddings are derived from a graph neural network Encoder-Decoder architecture, which jointly considers structural and functional connectivity. By leveraging data augmentation techniques, the proposed framework achieves state-of-the-art performance in a gender classification task using Human Connectome Project data. More broadly, our connectome-centric methodological advances support the promising prospect of using GSP to discover more about brain function, with potential impact to understanding heterogeneity in the neurodegeneration for precision medicine and diagnosis.

Submi...

Submitted to EMBC '25

GCBF+: A Neural Graph Control Barrier Function Framework for Distributed Safe Multi-Agent Control 2025-02-07
Show

Distributed, scalable, and safe control of large-scale multi-agent systems is a challenging problem. In this paper, we design a distributed framework for safe multi-agent control in large-scale environments with obstacles, where a large number of agents are required to maintain safety using only local information and reach their goal locations. We introduce a new class of certificates, termed graph control barrier function (GCBF), which are based on the well-established control barrier function theory for safety guarantees and utilize a graph structure for scalable and generalizable distributed control of MAS. We develop a novel theoretical framework to prove the safety of an arbitrary-sized MAS with a single GCBF. We propose a new training framework GCBF+ that uses graph neural networks to parameterize a candidate GCBF and a distributed control policy. The proposed framework is distributed and is capable of taking point clouds from LiDAR, instead of actual state information, for real-world robotic applications. We illustrate the efficacy of the proposed method through various hardware experiments on a swarm of drones with objectives ranging from exchanging positions to docking on a moving target without collision. Additionally, we perform extensive numerical experiments, where the number and density of agents, as well as the number of obstacles, increase. Empirical results show that in complex environments with agents with nonlinear dynamics (e.g., Crazyflie drones), GCBF+ outperforms the hand-crafted CBF-based method with the best performance by up to 20% for relatively small-scale MAS with up to 256 agents, and leading reinforcement learning (RL) methods by up to 40% for MAS with 1024 agents. Furthermore, the proposed method does not compromise on the performance, in terms of goal reaching, for achieving high safety rates, which is a common trade-off in RL-based methods.

20 pa...

20 pages, 15 figures; Accepted by IEEE Transactions on Robotics (T-RO)

Robust Graph Learning Against Adversarial Evasion Attacks via Prior-Free Diffusion-Based Structure Purification 2025-02-07
Show

Adversarial evasion attacks pose significant threats to graph learning, with lines of studies that have improved the robustness of Graph Neural Networks (GNNs). However, existing works rely on priors about clean graphs or attacking strategies, which are often heuristic and inconsistent. To achieve robust graph learning over different types of evasion attacks and diverse datasets, we investigate this problem from a prior-free structure purification perspective. Specifically, we propose a novel Diffusion-based Structure Purification framework named DiffSP, which creatively incorporates the graph diffusion model to learn intrinsic distributions of clean graphs and purify the perturbed structures by removing adversaries under the direction of the captured predictive patterns without relying on priors. DiffSP is divided into the forward diffusion process and the reverse denoising process, during which structure purification is achieved. To avoid valuable information loss during the forward process, we propose an LID-driven nonisotropic diffusion mechanism to selectively inject noise anisotropically. To promote semantic alignment between the clean graph and the purified graph generated during the reverse process, we reduce the generation uncertainty by the proposed graph transfer entropy guided denoising mechanism. Extensive experiments demonstrate the superior robustness of DiffSP against evasion attacks.

Accep...

Accepted for poster at WWW 2025

Sample complexity of data-driven tuning of model hyperparameters in neural networks with structured parameter-dependent dual function 2025-02-07
Show

Modern machine learning algorithms, especially deep learning based techniques, typically involve careful hyperparameter tuning to achieve the best performance. Despite the surge of intense interest in practical techniques like Bayesian optimization and random search based approaches to automating this laborious and compute-intensive task, the fundamental learning theoretic complexity of tuning hyperparameters for deep neural networks is poorly understood. Inspired by this glaring gap, we initiate the formal study of hyperparameter tuning complexity in deep learning through a recently introduced data driven setting. We assume that we have a series of deep learning tasks, and we have to tune hyperparameters to do well on average over the distribution of tasks. A major difficulty is that the utility function as a function of the hyperparameter is very volatile and furthermore, it is given implicitly by an optimization problem over the model parameters. This is unlike previous work in data driven design, where one can typically explicitly model the algorithmic behavior as a function of the hyperparameters. To tackle this challenge, we introduce a new technique to characterize the discontinuities and oscillations of the utility function on any fixed problem instance as we vary the hyperparameter, our analysis relies on subtle concepts including tools from differential/algebraic geometry and constrained optimization. This can be used to show that the learning theoretic complexity of the corresponding family of utility functions is bounded. We instantiate our results and provide sample complexity bounds for concrete applications tuning a hyperparameter that interpolates neural activation functions and setting the kernel parameter in graph neural networks.

50 pages, 4 figures
Scalable Parameter Design for Superconducting Quantum Circuits with Graph Neural Networks 2025-02-07
Show

To demonstrate supremacy of quantum computing, increasingly large-scale superconducting quantum computing chips are being designed and fabricated. However, the complexity of simulating quantum systems poses a significant challenge to computer-aided design of quantum chips, especially for large-scale chips. Harnessing the scalability of graph neural networks (GNNs), we here propose a parameter designing algorithm for large-scale superconducting quantum circuits. The algorithm depends on the so-called 'three-stair scaling' mechanism, which comprises two neural-network models: an evaluator supervisedly trained on small-scale circuits for applying to medium-scale circuits, and a designer unsupervisedly trained on medium-scale circuits for applying to large-scale ones. We demonstrate our algorithm in mitigating quantum crosstalk errors. Frequencies for both single- and two-qubit gates (corresponding to the parameters of nodes and edges) are considered simultaneously. Numerical results indicate that the well-trained designer achieves notable advantages in efficiency, effectiveness, and scalability. For example, for large-scale superconducting quantum circuits consisting of around 870 qubits, our GNNs-based algorithm achieves 51% of the errors produced by the state-of-the-art algorithm, with a time reduction from 90 min to 27 sec. Overall, a better-performing and more scalable algorithm for designing parameters of superconducting quantum chips is proposed, which initially demonstrates the advantages of applying GNNs in superconducting quantum chips.

GNNs Getting ComFy: Community and Feature Similarity Guided Rewiring 2025-02-07
Show

Maximizing the spectral gap through graph rewiring has been proposed to enhance the performance of message-passing graph neural networks (GNNs) by addressing over-squashing. However, as we show, minimizing the spectral gap can also improve generalization. To explain this, we analyze how rewiring can benefit GNNs within the context of stochastic block models. Since spectral gap optimization primarily influences community strength, it improves performance when the community structure aligns with node labels. Building on this insight, we propose three distinct rewiring strategies that explicitly target community structure, node labels, and their alignment: (a) community structure-based rewiring (ComMa), a more computationally efficient alternative to spectral gap optimization that achieves similar goals; (b) feature similarity-based rewiring (FeaSt), which focuses on maximizing global homophily; and (c) a hybrid approach (ComFy), which enhances local feature similarity while preserving community structure to optimize label-community alignment. Extensive experiments confirm the effectiveness of these strategies and support our theoretical insights.

Accep...

Accepted at ICLR 2025

Graph Federated Learning Based Proactive Content Caching in Edge Computing 2025-02-07
Show

With the rapid growth of mobile data traffic and the increasing prevalence of video streaming, proactive content caching in edge computing has become crucial for reducing latency and alleviating network congestion. However, traditional caching strategies such as FIFO, LRU, and LFU fail to effectively predict future content popularity, while existing proactive caching approaches often require users to upload data to a central server, raising concerns regarding privacy and scalability. To address these challenges, this paper proposes a Graph Federated Learning-based Proactive Content Caching (GFPCC) scheme that enhances caching efficiency while preserving user privacy. The proposed approach integrates federated learning and graph neural networks, enabling users to locally train Light Graph Convolutional Networks (LightGCN) to capture user-item relationships and predict content popularity. Instead of sharing raw data, only the trained model parameters are transmitted to the central server, where a federated averaging algorithm aggregates updates, refines the global model, and selects the most popular files for proactive caching. Experimental evaluations on real-world datasets, such as MovieLens, demonstrate that GFPCC outperforms baseline caching algorithms by achieving higher cache efficiency through more accurate content popularity predictions. Moreover, the federated learning framework strengthens privacy protection while maintaining efficient model training; however, scalability remains a challenge in large-scale networks with dynamic user preferences.

Can LLMs Convert Graphs to Text-Attributed Graphs? 2025-02-07
Show

Graphs are ubiquitous structures found in numerous real-world applications, such as drug discovery, recommender systems, and social network analysis. To model graph-structured data, graph neural networks (GNNs) have become a popular tool. However, existing GNN architectures encounter challenges in cross-graph learning where multiple graphs have different feature spaces. To address this, recent approaches introduce text-attributed graphs (TAGs), where each node is associated with a textual description, which can be projected into a unified feature space using textual encoders. While promising, this method relies heavily on the availability of text-attributed graph data, which is difficult to obtain in practice. To bridge this gap, we propose a novel method named Topology-Aware Node description Synthesis (TANS), leveraging large language models (LLMs) to convert existing graphs into text-attributed graphs. The key idea is to integrate topological information into LLMs to explain how graph topology influences node semantics. We evaluate our TANS on text-rich, text-limited, and text-free graphs, demonstrating its applicability. Notably, on text-free graphs, our method significantly outperforms existing approaches that manually design node features, showcasing the potential of LLMs for preprocessing graph-structured data in the absence of textual information. The code and data are available at https://github.com/Zehong-Wang/TANS.

Accep...

Accepted by NAACL 25 Main Conference

Rethinking Oversmoothing in Graph Neural Networks: A Rank-Based Perspective 2025-02-07
Show

Oversmoothing is a fundamental challenge in graph neural networks (GNNs): as the number of layers increases, node embeddings become increasingly similar, and model performance drops sharply. Traditionally, oversmoothing has been quantified using metrics that measure the similarity of neighbouring node features, such as the Dirichlet energy. While these metrics are related to oversmoothing, we argue they have critical limitations and fail to reliably capture oversmoothing in realistic scenarios. For instance, they provide meaningful insights only for very deep networks and under somewhat strict conditions on the norm of network weights and feature representations. As an alternative, we propose measuring oversmoothing by examining the numerical or effective rank of the feature representations. We provide theoretical support for this approach, demonstrating that the numerical rank of feature representations converges to one for a broad family of nonlinear activation functions under the assumption of nonnegative trained weights. To the best of our knowledge, this is the first result that proves the occurrence of oversmoothing without assumptions on the boundedness of the weight matrices. Along with the theoretical findings, we provide extensive numerical evaluation across diverse graph architectures. Our results show that rank-based metrics consistently capture oversmoothing, whereas energy-based metrics often fail. Notably, we reveal that a significant drop in the rank aligns closely with performance degradation, even in scenarios where energy metrics remain unchanged.

Learning Semantics-aware Search Operators for Genetic Programming 2025-02-06
Show

Fitness landscapes in test-based program synthesis are known to be extremely rugged, with even minimal modifications of programs often leading to fundamental changes in their behavior and, consequently, fitness values. Relying on fitness as the only guidance in iterative search algorithms like genetic programming is thus unnecessarily limiting, especially when combined with purely syntactic search operators that are agnostic about their impact on program behavior. In this study, we propose a semantics-aware search operator that steers the search towards candidate programs that are valuable not only actually (high fitness) but also only potentially, i.e. are likely to be turned into high-quality solutions even if their current fitness is low. The key component of the method is a graph neural network that learns to model the interactions between program instructions and processed data, and produces a saliency map over graph nodes that represents possible search decisions. When applied to a suite of symbolic regression benchmarks, the proposed method outperforms conventional tree-based genetic programming and the ablated variant of the method.

Submi...

Submitted to GECCO 2025

Provably Robust Explainable Graph Neural Networks against Graph Perturbation Attacks 2025-02-06
Show

Explaining Graph Neural Network (XGNN) has gained growing attention to facilitate the trust of using GNNs, which is the mainstream method to learn graph data. Despite their growing attention, Existing XGNNs focus on improving the explanation performance, and its robustness under attacks is largely unexplored. We noticed that an adversary can slightly perturb the graph structure such that the explanation result of XGNNs is largely changed. Such vulnerability of XGNNs could cause serious issues particularly in safety/security-critical applications. In this paper, we take the first step to study the robustness of XGNN against graph perturbation attacks, and propose XGNNCert, the first provably robust XGNN. Particularly, our XGNNCert can provably ensure the explanation result for a graph under the worst-case graph perturbation attack is close to that without the attack, while not affecting the GNN prediction, when the number of perturbed edges is bounded. Evaluation results on multiple graph datasets and GNN explainers show the effectiveness of XGNNCert.

Accep...

Accepted by ICLR 2025

E(n) Equivariant Topological Neural Networks 2025-02-06
Show

Graph neural networks excel at modeling pairwise interactions, but they cannot flexibly accommodate higher-order interactions and features. Topological deep learning (TDL) has emerged recently as a promising tool for addressing this issue. TDL enables the principled modeling of arbitrary multi-way, hierarchical higher-order interactions by operating on combinatorial topological spaces, such as simplicial or cell complexes, instead of graphs. However, little is known about how to leverage geometric features such as positions and velocities for TDL. This paper introduces E(n)-Equivariant Topological Neural Networks (ETNNs), which are E(n)-equivariant message-passing networks operating on combinatorial complexes, formal objects unifying graphs, hypergraphs, simplicial, path, and cell complexes. ETNNs incorporate geometric node features while respecting rotation, reflection, and translation equivariance. Moreover, being TDL models, ETNNs are natively ready for settings with heterogeneous interactions. We provide a theoretical analysis to show the improved expressiveness of ETNNs over architectures for geometric graphs. We also show how E(n)-equivariant variants of TDL models can be directly derived from our framework. The broad applicability of ETNNs is demonstrated through two tasks of vastly different scales: i) molecular property prediction on the QM9 benchmark and ii) land-use regression for hyper-local estimation of air pollution with multi-resolution irregular geospatial data. The results indicate that ETNNs are an effective tool for learning from diverse types of richly structured data, as they match or surpass SotA equivariant TDL models with a significantly smaller computational burden, thus highlighting the benefits of a principled geometric inductive bias. Our implementation of ETNNs can be found at https://github.com/NSAPH-Projects/topological-equivariant-networks.

43 pa...

43 pages, 11 figures, 12 tables

G-Designer: Architecting Multi-agent Communication Topologies via Graph Neural Networks 2025-02-06
Show

Recent advancements in large language model (LLM)-based agents have demonstrated that collective intelligence can significantly surpass the capabilities of individual agents, primarily due to well-crafted inter-agent communication topologies. Despite the diverse and high-performing designs available, practitioners often face confusion when selecting the most effective pipeline for their specific task: \textit{Which topology is the best choice for my task, avoiding unnecessary communication token overhead while ensuring high-quality solution?} In response to this dilemma, we introduce G-Designer, an adaptive, efficient, and robust solution for multi-agent deployment, which dynamically designs task-aware, customized communication topologies. Specifically, G-Designer models the multi-agent system as a multi-agent network, leveraging a variational graph auto-encoder to encode both the nodes (agents) and a task-specific virtual node, and decodes a task-adaptive and high-performing communication topology. Extensive experiments on six benchmarks showcase that G-Designer is: \textbf{(1) high-performing}, achieving superior results on MMLU with accuracy at $84.50%$ and on HumanEval with pass@1 at $89.90%$; \textbf{(2) task-adaptive}, architecting communication protocols tailored to task difficulty, reducing token consumption by up to $95.33%$ on HumanEval; and \textbf{(3) adversarially robust}, defending against agent adversarial attacks with merely $0.3%$ accuracy drop.

GraphGPT: Generative Pre-trained Graph Eulerian Transformer 2025-02-06
Show

We introduceGraphGPT, a novel self-supervised generative pre-trained model for graph learning based on the Graph Eulerian Transformer (GET). First, we propose GET, which combines a standard transformer encoder or decoder architecture with an innovative graph-to-sequence transformation method. This method converts graphs or sampled subgraphs into sequences of tokens representing nodes, edges, and attributes in a reversible manner using Eulerian paths. We pre-train GET using either of the two self-supervised tasks: next-token prediction (NTP) and scheduled masked-token prediction (SMTP). The pre-trained model is then fine-tuned for downstream tasks such as graph-, edge-, and node-level prediction. Despite its simplicity, GraphGPT achieves performance comparable to or surpassing state-of-the-art methods on multiple large-scale Open Graph Benchmark (OGB) datasets. It demonstrates exceptional results on the molecular property prediction dataset PCQM4Mv2 and the protein-protein interaction dataset ogbl-ppa. Notably, generative pre-training enables scaling GraphGPT to 2 billion parameters while maintaining performance gains - a breakthrough that overcomes the scalability limitations of traditional Graph Neural Networks (GNNs) and prior graph transformers (GTs). To advance research in graph foundation models and facilitate scientific discovery in chemistry, materials science, and related fields, we will release the source code (https://github.com/alibaba/graph-gpt) and pre-trained checkpoints.

8 pages
Graph-Enhanced EEG Foundation Model 2025-02-06
Show

Electroencephalography (EEG) signals provide critical insights for applications in disease diagnosis and healthcare. However, the scarcity of labeled EEG data poses a significant challenge. Foundation models offer a promising solution by leveraging large-scale unlabeled data through pre-training, enabling strong performance across diverse tasks. While both temporal dynamics and inter-channel relationships are vital for understanding EEG signals, existing EEG foundation models primarily focus on the former, overlooking the latter. To address this limitation, we propose a novel foundation model for EEG that integrates both temporal and inter-channel information. Our architecture combines Graph Neural Networks (GNNs), which effectively capture relational structures, with a masked autoencoder to enable efficient pre-training. We evaluated our approach using three downstream tasks and experimented with various GNN architectures. The results demonstrate that our proposed model, particularly when employing the GCN architecture with optimized configurations, consistently outperformed baseline methods across all tasks. These findings suggest that our model serves as a robust foundation model for EEG analysis.

G-Adaptivity: optimised graph-based mesh relocation for finite element methods 2025-02-06
Show

We present a novel, and effective, approach to achieve optimal mesh relocation in finite element methods (FEMs). The cost and accuracy of FEMs is critically dependent on the choice of mesh points. Mesh relocation (r-adaptivity) seeks to optimise the mesh geometry to obtain the best solution accuracy at given computational budget. Classical r-adaptivity relies on the solution of a separate nonlinear "meshing" PDE to determine mesh point locations. This incurs significant cost at remeshing, and relies on estimates that relate interpolation- and FEM-error. Recent machine learning approaches have focused on the construction of fast surrogates for such classical methods. Instead, our new approach trains a graph neural network (GNN) to determine mesh point locations by directly minimising the FE solution error from the PDE system Firedrake to achieve higher solution accuracy. Our GNN architecture closely aligns the mesh solution space to that of classical meshing methodologies, thus replacing classical estimates for optimality with a learnable strategy. This allows for rapid and robust training and results in an extremely efficient and effective GNN approach to online r-adaptivity. Our method outperforms both classical, and prior ML, approaches to r-adaptive meshing. In particular, it achieves lower FE solution error, whilst retaining the significant speed-up over classical methods observed in prior ML work.

Beyond Interpolation: Extrapolative Reasoning with Reinforcement Learning and Graph Neural Networks 2025-02-06
Show

Despite incredible progress, many neural architectures fail to properly generalize beyond their training distribution. As such, learning to reason in a correct and generalizable way is one of the current fundamental challenges in machine learning. In this respect, logic puzzles provide a great testbed, as we can fully understand and control the learning environment. Thus, they allow to evaluate performance on previously unseen, larger and more difficult puzzles that follow the same underlying rules. Since traditional approaches often struggle to represent such scalable logical structures, we propose to model these puzzles using a graph-based approach. Then, we investigate the key factors enabling the proposed models to learn generalizable solutions in a reinforcement learning setting. Our study focuses on the impact of the inductive bias of the architecture, different reward systems and the role of recurrent modeling in enabling sequential reasoning. Through extensive experiments, we demonstrate how these elements contribute to successful extrapolation on increasingly complex puzzles.These insights and frameworks offer a systematic way to design learning-based systems capable of generalizable reasoning beyond interpolation.

The f...

The first two authors contributed equally to this work. Accepted as workshop paper at NEURMAD@AAAI25

Generalizing Weisfeiler-Lehman Kernels to Subgraphs 2025-02-06
Show

Subgraph representation learning has been effective in solving various real-world problems. However, current graph neural networks (GNNs) produce suboptimal results for subgraph-level tasks due to their inability to capture complex interactions within and between subgraphs. To provide a more expressive and efficient alternative, we propose WLKS, a Weisfeiler-Lehman (WL) kernel generalized for subgraphs by applying the WL algorithm on induced $k$-hop neighborhoods. We combine kernels across different $k$-hop levels to capture richer structural information that is not fully encoded in existing models. Our approach can balance expressiveness and efficiency by eliminating the need for neighborhood sampling. In experiments on eight real-world and synthetic benchmarks, WLKS significantly outperforms leading approaches on five datasets while reducing training time, ranging from 0.01x to 0.25x compared to the state-of-the-art.

ICLR ...

ICLR 2025 Camera Ready (15 pages)

Online Location Planning for AI-Defined Vehicles: Optimizing Joint Tasks of Order Serving and Spatio-Temporal Heterogeneous Model Fine-Tuning 2025-02-06
Show

Advances in artificial intelligence (AI) including foundation models (FMs), are increasingly transforming human society, with smart city driving the evolution of urban living.Meanwhile, vehicle crowdsensing (VCS) has emerged as a key enabler, leveraging vehicles' mobility and sensor-equipped capabilities. In particular, ride-hailing vehicles can effectively facilitate flexible data collection and contribute towards urban intelligence, despite resource limitations. Therefore, this work explores a promising scenario, where edge-assisted vehicles perform joint tasks of order serving and the emerging foundation model fine-tuning using various urban data. However, integrating the VCS AI task with the conventional order serving task is challenging, due to their inconsistent spatio-temporal characteristics: (i) The distributions of ride orders and data point-of-interests (PoIs) may not coincide in geography, both following a priori unknown patterns; (ii) they have distinct forms of temporal effects, i.e., prolonged waiting makes orders become instantly invalid while data with increased staleness gradually reduces its utility for model fine-tuning.To overcome these obstacles, we propose an online framework based on multi-agent reinforcement learning (MARL) with careful augmentation. A new quality-of-service (QoS) metric is designed to characterize and balance the utility of the two joint tasks, under the effects of varying data volumes and staleness. We also integrate graph neural networks (GNNs) with MARL to enhance state representations, capturing graph-structured, time-varying dependencies among vehicles and across locations. Extensive experiments on our testbed simulator, utilizing various real-world foundation model fine-tuning tasks and the New York City Taxi ride order dataset, demonstrate the advantage of our proposed method.

Graph Neural Network-Driven Hierarchical Mining for Complex Imbalanced Data 2025-02-06
Show

This study presents a hierarchical mining framework for high-dimensional imbalanced data, leveraging a depth graph model to address the inherent performance limitations of conventional approaches in handling complex, high-dimensional data distributions with imbalanced sample representations. By constructing a structured graph representation of the dataset and integrating graph neural network (GNN) embeddings, the proposed method effectively captures global interdependencies among samples. Furthermore, a hierarchical strategy is employed to enhance the characterization and extraction of minority class feature patterns, thereby facilitating precise and robust imbalanced data mining. Empirical evaluations across multiple experimental scenarios validate the efficacy of the proposed approach, demonstrating substantial improvements over traditional methods in key performance metrics, including pattern discovery count, average support, and minority class coverage. Notably, the method exhibits superior capabilities in minority-class feature extraction and pattern correlation analysis. These findings underscore the potential of depth graph models, in conjunction with hierarchical mining strategies, to significantly enhance the efficiency and accuracy of imbalanced data analysis. This research contributes a novel computational framework for high-dimensional complex data processing and lays the foundation for future extensions to dynamically evolving imbalanced data and multi-modal data applications, thereby expanding the applicability of advanced data mining methodologies to more intricate analytical domains.

Network-Wide Traffic Flow Estimation Across Multiple Cities with Global Open Multi-Source Data: A Large-Scale Case Study in Europe and North America 2025-02-06
Show

Network-wide traffic flow, which captures dynamic traffic volume on each link of a general network, is fundamental to smart mobility applications. However, the observed traffic flow from sensors is usually limited across the entire network due to the associated high installation and maintenance costs. To address this issue, existing research uses various supplementary data sources to compensate for insufficient sensor coverage and estimate the unobserved traffic flow. Although these studies have shown promising results, the inconsistent availability and quality of supplementary data across cities make their methods typically face a trade-off challenge between accuracy and generality. In this research, we first time advocate using the Global Open Multi-Source (GOMS) data within an advanced deep learning framework to break the trade-off. The GOMS data primarily encompass geographical and demographic information, including road topology, building footprints, and population density, which can be consistently collected across cities. More importantly, these GOMS data are either causes or consequences of transportation activities, thereby creating opportunities for accurate network-wide flow estimation. Furthermore, we use map images to represent GOMS data, instead of traditional tabular formats, to capture richer and more comprehensive geographical and demographic information. To address multi-source data fusion, we develop an attention-based graph neural network that effectively extracts and synthesizes information from GOMS maps while simultaneously capturing spatiotemporal traffic dynamics from observed traffic data. A large-scale case study across 15 cities in Europe and North America was conducted. The results demonstrate stable and satisfactory estimation accuracy across these cities, which suggests that the trade-off challenge can be successfully addressed using our approach.

Efficient IAM Greybox Penetration Testing 2025-02-06
Show

Identity and Access Management (IAM) is an access control service in cloud platforms. To securely manage cloud resources, customers need to configure IAM to specify the access control rules for their cloud organizations. However, misconfigured IAM can lead to privilege escalation (PE) attacks, causing significant economic loss. Third-party cloud security services detect such issues using whitebox penetration testing, which requires full access to IAM configurations. However, since these configurations often contain sensitive data, customers must manually anonymize them to protect their privacy. To address the dual challenges of anonymization and data privacy, we introduce TAC, the first greybox penetration testing approach for third-party services to efficiently detect IAM PEs. Instead of requiring customers to blindly anonymize their entire IAM configuration, TAC intelligently interacts with customers by querying only a small fraction of information in the IAM configuration that is necessary for PE detection. To achieve this, TAC integrates two key innovations: (1) a comprehensive IAM modeling approach to detect a wide range of IAM PEs using partial information collected from query responses, and (2) a query optimization mechanism leveraging Reinforcement Learning (RL) and Graph Neural Networks (GNNs) to minimize customer inputs. Additionally, to address the scarcity of real-world IAM PE datasets, we introduce IAMVulGen, a synthesizer that generates a large number of diverse IAM PEs that mimic real-world scenarios. Experimental results on both synthetic and real-world benchmarks show that TAC, as a greybox approach, achieves competitively low and, in some cases, significantly lower false negative rates than state-ofthe-art whitebox approaches, while utilizing a limited number of queries.

MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights 2025-02-06
Show

Molecular representation learning plays a crucial role in various downstream tasks, such as molecular property prediction and drug design. To accurately represent molecules, Graph Neural Networks (GNNs) and Graph Transformers (GTs) have shown potential in the realm of self-supervised pretraining. However, existing approaches often overlook the relationship between molecular structure and electronic information, as well as the internal semantic reasoning within molecules. This omission of fundamental chemical knowledge in graph semantics leads to incomplete molecular representations, missing the integration of structural and electronic data. To address these issues, we introduce MOL-Mamba, a framework that enhances molecular representation by combining structural and electronic insights. MOL-Mamba consists of an Atom & Fragment Mamba-Graph (MG) for hierarchical structural reasoning and a Mamba-Transformer (MT) fuser for integrating molecular structure and electronic correlation learning. Additionally, we propose a Structural Distribution Collaborative Training and E-semantic Fusion Training framework to further enhance molecular representation learning. Extensive experiments demonstrate that MOL-Mamba outperforms state-of-the-art baselines across eleven chemical-biological molecular datasets.

Accepted by AAAI2025
On the Expressive Power of Subgraph Graph Neural Networks for Graphs with Bounded Cycles 2025-02-06
Show

Graph neural networks (GNNs) have been widely used in graph-related contexts. It is known that the separation power of GNNs is equivalent to that of the Weisfeiler-Lehman (WL) test; hence, GNNs are imperfect at identifying all non-isomorphic graphs, which severely limits their expressive power. This work investigates $k$-hop subgraph GNNs that aggregate information from neighbors with distances up to $k$ and incorporate the subgraph structure. We prove that under appropriate assumptions, the $k$-hop subgraph GNNs can approximate any permutation-invariant/equivariant continuous function over graphs without cycles of length greater than $2k+1$ within any error tolerance. We also provide an extension to $k$-hop GNNs without incorporating the subgraph structure. Our numerical experiments on established benchmarks and novel architectures validate our theory on the relationship between the information aggregation distance and the cycle size.

Comparative Analysis of FPGA and GPU Performance for Machine Learning-Based Track Reconstruction at LHCb 2025-02-05
Show

In high-energy physics, the increasing luminosity and detector granularity at the Large Hadron Collider are driving the need for more efficient data processing solutions. Machine Learning has emerged as a promising tool for reconstructing charged particle tracks, due to its potentially linear computational scaling with detector hits. The recent implementation of a graph neural network-based track reconstruction pipeline in the first level trigger of the LHCb experiment on GPUs serves as a platform for comparative studies between computational architectures in the context of high-energy physics. This paper presents a novel comparison of the throughput of ML model inference between FPGAs and GPUs, focusing on the first step of the track reconstruction pipeline$\unicode{x2013}$an implementation of a multilayer perceptron. Using HLS4ML for FPGA deployment, we benchmark its performance against the GPU implementation and demonstrate the potential of FPGAs for high-throughput, low-latency inference without the need for an expertise in FPGA development and while consuming significantly less power.

Advancing Drug Discovery with Enhanced Chemical Understanding via Asymmetric Contrastive Multimodal Learning 2025-02-05
Show

The versatility of multimodal deep learning holds tremendous promise for advancing scientific research and practical applications. As this field continues to evolve, the collective power of cross-modal analysis promises to drive transformative innovations, opening new frontiers in chemical understanding and drug discovery. Hence, we introduce Asymmetric Contrastive Multimodal Learning (ACML), a specifically designed approach to enhance molecular understanding and accelerate advancements in drug discovery. ACML harnesses the power of effective asymmetric contrastive learning to seamlessly transfer information from various chemical modalities to molecular graph representations. By combining pre-trained chemical unimodal encoders and a shallow-designed graph encoder with 5 layers, ACML facilitates the assimilation of coordinated chemical semantics from different modalities, leading to comprehensive representation learning with efficient training. We demonstrate the effectiveness of this framework through large-scale cross-modality retrieval and isomer discrimination tasks. Additionally, ACML enhances interpretability by revealing chemical semantics in graph presentations and bolsters the expressive power of graph neural networks, as evidenced by improved performance in molecular property prediction tasks from MoleculeNet and Therapeutics Data Commons (TDC). Ultimately, ACML exemplifies its potential to revolutionize molecular representational learning, offering deeper insights into the chemical semantics of diverse modalities and paving the way for groundbreaking advancements in chemical research and drug discovery.

31 pa...

31 pages, 5 figures, 8 tables

Prediction of the Most Fire-Sensitive Point in Building Structures with Differentiable Agents for Thermal Simulators 2025-02-05
Show

Fire safety is a critical area of research in civil and mechanical engineering, particularly in ensuring the structural stability of buildings during fire events. The Most Fire-Sensitive Point (MFSP) in a structure is the location where a fire would cause the greatest impact on structural stability. Accurate prediction of the MFSP is vital for streamlining structural assessments and optimizing the design process. This paper presents a novel framework for MFSP prediction using a neural network-based approach that integrates fire dynamics and finite element analysis through a differentiable agent model. The framework focuses on predicting the Maximum Interstory Drift Ratio (MIDR), a key indicator of structural performance under fire conditions. By leveraging the differentiable agent model, we efficiently generate labeled data for MFSP and directly train a predictor for this critical metric. To achieve this, we generated extensive simulation data encompassing structural and fire scenarios and employed graph neural networks to represent the building structures. Transfer learning was applied to optimize the training process, and an edge update mechanism was introduced to dynamically adjust edge attributes, reflecting property changes under fire conditions. The proposed model was rigorously evaluated on simulation data, demonstrating strong performance in accurately predicting both MIDR and MFSP, thus advancing fire safety analysis for building structures.

This ...

This paper is currently under review at Computer-Aided Civil and Infrastructure Engineering

RiemannGFM: Learning a Graph Foundation Model from Riemannian Geometry 2025-02-05
Show

The foundation model has heralded a new era in artificial intelligence, pretraining a single model to offer cross-domain transferability on different datasets. Graph neural networks excel at learning graph data, the omnipresent non-Euclidean structure, but often lack the generalization capacity. Hence, graph foundation model is drawing increasing attention, and recent efforts have been made to leverage Large Language Models. On the one hand, existing studies primarily focus on text-attributed graphs, while a wider range of real graphs do not contain fruitful textual attributes. On the other hand, the sequential graph description tailored for the Large Language Model neglects the structural complexity, which is a predominant characteristic of the graph. Such limitations motivate an important question: Can we go beyond Large Language Models, and pretrain a universal model to learn the structural knowledge for any graph? The answer in the language or vision domain is a shared vocabulary. We observe the fact that there also exist shared substructures underlying graph domain, and thereby open a new opportunity of graph foundation model with structural vocabulary. The key innovation is the discovery of a simple yet effective structural vocabulary of trees and cycles, and we explore its inherent connection to Riemannian geometry. Herein, we present a universal pretraining model, RiemannGFM. Concretely, we first construct a novel product bundle to incorporate the diverse geometries of the vocabulary. Then, on this constructed space, we stack Riemannian layers where the structural vocabulary, regardless of specific graph, is learned in Riemannian manifold offering cross-domain transferability. Extensive experiments show the effectiveness of RiemannGFM on a diversity of real graphs.

Accepted by WWW25
SpaceGNN: Multi-Space Graph Neural Network for Node Anomaly Detection with Extremely Limited Labels 2025-02-05
Show

Node Anomaly Detection (NAD) has gained significant attention in the deep learning community due to its diverse applications in real-world scenarios. Existing NAD methods primarily embed graphs within a single Euclidean space, while overlooking the potential of non-Euclidean spaces. Besides, to address the prevalent issue of limited supervision in real NAD tasks, previous methods tend to leverage synthetic data to collect auxiliary information, which is not an effective solution as shown in our experiments. To overcome these challenges, we introduce a novel SpaceGNN model designed for NAD tasks with extremely limited labels. Specifically, we provide deeper insights into a task-relevant framework by empirically analyzing the benefits of different spaces for node representations, based on which, we design a Learnable Space Projection function that effectively encodes nodes into suitable spaces. Besides, we introduce the concept of weighted homogeneity, which we empirically and theoretically validate as an effective coefficient during information propagation. This concept inspires the design of the Distance Aware Propagation module. Furthermore, we propose the Multiple Space Ensemble module, which extracts comprehensive information for NAD under conditions of extremely limited supervision. Our findings indicate that this module is more beneficial than data augmentation techniques for NAD. Extensive experiments conducted on 9 real datasets confirm the superiority of SpaceGNN, which outperforms the best rival by an average of 8.55% in AUC and 4.31% in F1 scores. Our code is available at https://github.com/xydong127/SpaceGNN.

Optimizing Electric Vehicles Charging using Large Language Models and Graph Neural Networks 2025-02-05
Show

Maintaining grid stability amid widespread electric vehicle (EV) adoption is vital for sustainable transportation. Traditional optimization methods and Reinforcement Learning (RL) approaches often struggle with the high dimensionality and dynamic nature of real-time EV charging, leading to sub-optimal solutions. To address these challenges, this study demonstrates that combining Large Language Models (LLMs), for sequence modeling, with Graph Neural Networks (GNNs), for relational information extraction, not only outperforms conventional EV smart charging methods, but also paves the way for entirely new research directions and innovative solutions.

TGB-Seq Benchmark: Challenging Temporal GNNs with Complex Sequential Dynamics 2025-02-05
Show

Future link prediction is a fundamental challenge in various real-world dynamic systems. To address this, numerous temporal graph neural networks (temporal GNNs) and benchmark datasets have been developed. However, these datasets often feature excessive repeated edges and lack complex sequential dynamics, a key characteristic inherent in many real-world applications such as recommender systems and Who-To-Follow'' on social networks. This oversight has led existing methods to inadvertently downplay the importance of learning sequential dynamics, focusing primarily on predicting repeated edges. In this study, we demonstrate that existing methods, such as GraphMixer and DyGFormer, are inherently incapable of learning simple sequential dynamics, such as a user who has followed OpenAI and Anthropic is more likely to follow AI at Meta next.'' Motivated by this issue, we introduce the Temporal Graph Benchmark with Sequential Dynamics (TGB-Seq), a new benchmark carefully curated to minimize repeated edges, challenging models to learn sequential dynamics and generalize to unseen edges. TGB-Seq comprises large real-world datasets spanning diverse domains, including e-commerce interactions, movie ratings, business reviews, social networks, citation networks and web link networks. Benchmarking experiments reveal that current methods usually suffer significant performance degradation and incur substantial training costs on TGB-Seq, posing new challenges and opportunities for future research. TGB-Seq datasets, leaderboards, and example codes are available at https://tgb-seq.github.io/.

publi...

published at ICLR 2025

Contrastive Token-level Explanations for Graph-based Rumour Detection 2025-02-05
Show

The widespread use of social media has accelerated the dissemination of information, but it has also facilitated the spread of harmful rumours, which can disrupt economies, influence political outcomes, and exacerbate public health crises, such as the COVID-19 pandemic. While Graph Neural Network (GNN)-based approaches have shown significant promise in automated rumour detection, they often lack transparency, making their predictions difficult to interpret. Existing graph explainability techniques fall short in addressing the unique challenges posed by the dependencies among feature dimensions in high-dimensional text embeddings used in GNN-based models. In this paper, we introduce Contrastive Token Layerwise Relevance Propagation (CT-LRP), a novel framework designed to enhance the explainability of GNN-based rumour detection. CT-LRP extends current graph explainability methods by providing token-level explanations that offer greater granularity and interpretability. We evaluate the effectiveness of CT-LRP across multiple GNN models trained on three publicly available rumour detection datasets, demonstrating that it consistently produces high-fidelity, meaningful explanations, paving the way for more robust and trustworthy rumour detection systems.

This ...

This work has been submitted to the IEEE for possible publication

Cardinality Estimation on Hyper-relational Knowledge Graphs 2025-02-05
Show

Cardinality Estimation (CE) for query is to estimate the number of results without execution, which is an effective index in query optimization. Recently, CE for queries over knowlege graph (KGs) with triple facts has achieved great success. To more precisely represent facts, current researchers propose hyper-relational KGs (HKGs) to represent a triple fact with qualifiers providing additional context to the fact. However, existing CE methods, such as sampling and summary methods over KGs, perform unsatisfactorily on HKGs due to the complexity of qualifiers. Learning-based CE methods do not utilize qualifier information to learn query representation accurately, leading to poor performance. Also, there is only one limited CE benchmark for HKG query, which is not comprehensive and only covers limited patterns. The lack of querysets over HKG also becomes a bottleneck to comprehensively investigate CE problems on HKGs. In this work, we first construct diverse and unbiased hyper-relational querysets over three popular HKGs for investigating CE. Besides, we also propose a novel qualifier-aware graph neural network (GNN) model that effectively incorporates qualifier information and adaptively combines outputs from multiple GNN layers, to accurately predict the cardinality. Our experiments demonstrate that our model outperforms all state-of-the-art CE methods over three benchmarks on popular HKGs.

Beyond Topological Self-Explainable GNNs: A Formal Explainability Perspective 2025-02-04
Show

Self-Explainable Graph Neural Networks (SE-GNNs) are popular explainable-by-design GNNs, but the properties and the limitations of their explanations are not well understood. Our first contribution fills this gap by formalizing the explanations extracted by SE-GNNs, referred to as Trivial Explanations (TEs), and comparing them to established notions of explanations, namely Prime Implicant (PI) and faithful explanations. Our analysis reveals that TEs match PI explanations for a restricted but significant family of tasks. In general, however, they can be less informative than PI explanations and are surprisingly misaligned with widely accepted notions of faithfulness. Although faithful and PI explanations are informative, they are intractable to find and we show that they can be prohibitively large. Motivated by this, we propose Dual-Channel GNNs that integrate a white-box rule extractor and a standard SE-GNN, adaptively combining both channels when the task benefits. Our experiments show that even a simple instantiation of Dual-Channel GNNs can recover succinct rules and perform on par or better than widely used SE-GNNs. Our code can be found in the supplementary material.

HetGPT: Harnessing the Power of Prompt Tuning in Pre-Trained Heterogeneous Graph Neural Networks 2025-02-04
Show

Graphs have emerged as a natural choice to represent and analyze the intricate patterns and rich information of the Web, enabling applications such as online page classification and social recommendation. The prevailing "pre-train, fine-tune" paradigm has been widely adopted in graph machine learning tasks, particularly in scenarios with limited labeled nodes. However, this approach often exhibits a misalignment between the training objectives of pretext tasks and those of downstream tasks. This gap can result in the "negative transfer" problem, wherein the knowledge gained from pre-training adversely affects performance in the downstream tasks. The surge in prompt-based learning within Natural Language Processing (NLP) suggests the potential of adapting a "pre-train, prompt" paradigm to graphs as an alternative. However, existing graph prompting techniques are tailored to homogeneous graphs, neglecting the inherent heterogeneity of Web graphs. To bridge this gap, we propose HetGPT, a general post-training prompting framework to improve the predictive performance of pre-trained heterogeneous graph neural networks (HGNNs). The key is the design of a novel prompting function that integrates a virtual class prompt and a heterogeneous feature prompt, with the aim to reformulate downstream tasks to mirror pretext tasks. Moreover, HetGPT introduces a multi-view neighborhood aggregation mechanism, capturing the complex neighborhood structure in heterogeneous graphs. Extensive experiments on three benchmark datasets demonstrate HetGPT's capability to enhance the performance of state-of-the-art HGNNs on semi-supervised node classification.

Publi...

Published in The ACM Web Conference 2024 (WWW '24)

Product Manifold Representations for Learning on Biological Pathways 2025-02-04
Show

Machine learning models that embed graphs in non-Euclidean spaces have shown substantial benefits in a variety of contexts, but their application has not been studied extensively in the biological domain, particularly with respect to biological pathway graphs. Such graphs exhibit a variety of complex network structures, presenting challenges to existing embedding approaches. Learning high-quality embeddings for biological pathway graphs is important for researchers looking to understand the underpinnings of disease and train high-quality predictive models on these networks. In this work, we investigate the effects of embedding pathway graphs in non-Euclidean mixed-curvature spaces and compare against traditional Euclidean graph representation learning models. We then train a supervised model using the learned node embeddings to predict missing protein-protein interactions in pathway graphs. We find large reductions in distortion and boosts on in-distribution edge prediction performance as a result of using mixed-curvature embeddings and their corresponding graph neural network models. However, we find that mixed-curvature representations underperform existing baselines on out-of-distribution edge prediction performance suggesting that these representations may overfit to the training graph topology. We provide our Mixed-Curvature Product Graph Convolutional Network code at https://github.com/mcneela/Mixed-Curvature-GCN and our pathway analysis code at https://github.com/mcneela/Mixed-Curvature-Pathways.

29 pages, 19 figures
scBIT: Integrating Single-cell Transcriptomic Data into fMRI-based Prediction for Alzheimer's Disease Diagnosis 2025-02-04
Show

Functional MRI (fMRI) and single-cell transcriptomics are pivotal in Alzheimer's disease (AD) research, each providing unique insights into neural function and molecular mechanisms. However, integrating these complementary modalities remains largely unexplored. Here, we introduce scBIT, a novel method for enhancing AD prediction by combining fMRI with single-nucleus RNA (snRNA). scBIT leverages snRNA as an auxiliary modality, significantly improving fMRI-based prediction models and providing comprehensive interpretability. It employs a sampling strategy to segment snRNA data into cell-type-specific gene networks and utilizes a self-explainable graph neural network to extract critical subgraphs. Additionally, we use demographic and genetic similarities to pair snRNA and fMRI data across individuals, enabling robust cross-modal learning. Extensive experiments validate scBIT's effectiveness in revealing intricate brain region-gene associations and enhancing diagnostic prediction accuracy. By advancing brain imaging transcriptomics to the single-cell level, scBIT sheds new light on biomarker discovery in AD research. Experimental results show that incorporating snRNA data into the scBIT model significantly boosts accuracy, improving binary classification by 3.39% and five-class classification by 26.59%. The codes were implemented in Python and have been released on GitHub (https://github.com/77YQ77/scBIT) and Zenodo (https://zenodo.org/records/11599030) with detailed instructions.

31 pages, 5 figures
Graph Structure Learning for Tumor Microenvironment with Cell Type Annotation from non-spatial scRNA-seq data 2025-02-04
Show

The exploration of cellular heterogeneity within the tumor microenvironment (TME) via single-cell RNA sequencing (scRNA-seq) is essential for understanding cancer progression and response to therapy. Current scRNA-seq approaches, however, lack spatial context and rely on incomplete datasets of ligand-receptor interactions (LRIs), limiting accurate cell type annotation and cell-cell communication (CCC) inference. This study addresses these challenges using a novel graph neural network (GNN) model that enhances cell type prediction and cell interaction analysis. Our study utilized a dataset consisting of 49,020 cells from 19 patients across three cancer types: Leukemia, Breast Invasive Carcinoma, and Colorectal Cancer. The proposed scGSL model demonstrated robust performance, achieving an average accuracy of 84.83%, precision of 86.23%, recall of 81.51%, and an F1 score of 80.92% across all datasets. These metrics represent a significant enhancement over existing methods, which typically exhibit lower performance metrics. Additionally, by reviewing existing literature on gene interactions within the TME, the scGSL model proves to robustly identify biologically meaningful gene interactions in an unsupervised manner, validated by significant expression differences in key gene pairs across various cancers. The source code and data used in this paper can be found in https://github.com/LiYuechao1998/scGSL.

29 pages, 6 figures
Do Graph Diffusion Models Accurately Capture and Generate Substructure Distributions? 2025-02-04
Show

Diffusion models have gained popularity in graph generation tasks; however, the extent of their expressivity concerning the graph distributions they can learn is not fully understood. Unlike models in other domains, popular backbones for graph diffusion models, such as Graph Transformers, do not possess universal expressivity to accurately model the distribution scores of complex graph data. Our work addresses this limitation by focusing on the frequency of specific substructures as a key characteristic of target graph distributions. When evaluating existing models using this metric, we find that they fail to maintain the distribution of substructure counts observed in the training set when generating new graphs. To address this issue, we establish a theoretical connection between the expressivity of Graph Neural Networks (GNNs) and the overall performance of graph diffusion models, demonstrating that more expressive GNN backbones can better capture complex distribution patterns. By integrating advanced GNNs into the backbone architecture, we achieve significant improvements in substructure generation.

Under Review
Using Random Noise Equivariantly to Boost Graph Neural Networks Universally 2025-02-04
Show

Recent advances in Graph Neural Networks (GNNs) have explored the potential of random noise as an input feature to enhance expressivity across diverse tasks. However, naively incorporating noise can degrade performance, while architectures tailored to exploit noise for specific tasks excel yet lack broad applicability. This paper tackles these issues by laying down a theoretical framework that elucidates the increased sample complexity when introducing random noise into GNNs without careful design. We further propose Equivariant Noise GNN (ENGNN), a novel architecture that harnesses the symmetrical properties of noise to mitigate sample complexity and bolster generalization. Our experiments demonstrate that using noise equivariantly significantly enhances performance on node-level, link-level, subgraph, and graph-level tasks and achieves comparable performance to models designed for specific tasks, thereby offering a general method to boost expressivity across various graph tasks.

Under review
Towards graph neural networks for provably solving convex optimization problems 2025-02-04
Show

Recently, message-passing graph neural networks (MPNNs) have shown potential for solving combinatorial and continuous optimization problems due to their ability to capture variable-constraint interactions. While existing approaches leverage MPNNs to approximate solutions or warm-start traditional solvers, they often lack guarantees for feasibility, particularly in convex optimization settings. Here, we propose an iterative MPNN framework to solve convex optimization problems with provable feasibility guarantees. First, we demonstrate that MPNNs can provably simulate standard interior-point methods for solving quadratic problems with linear constraints, covering relevant problems such as SVMs. Secondly, to ensure feasibility, we introduce a variant that starts from a feasible point and iteratively restricts the search within the feasible region. Experimental results show that our approach outperforms existing neural baselines in solution quality and feasibility, generalizes well to unseen problem sizes, and, in some cases, achieves faster solution times than state-of-the-art solvers such as Gurobi.

MAGNNET: Multi-Agent Graph Neural Network-based Efficient Task Allocation for Autonomous Vehicles with Deep Reinforcement Learning 2025-02-04
Show

This paper addresses the challenge of decentralized task allocation within heterogeneous multi-agent systems operating under communication constraints. We introduce a novel framework that integrates graph neural networks (GNNs) with a centralized training and decentralized execution (CTDE) paradigm, further enhanced by a tailored Proximal Policy Optimization (PPO) algorithm for multi-agent deep reinforcement learning (MARL). Our approach enables unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) to dynamically allocate tasks efficiently without necessitating central coordination in a 3D grid environment. The framework minimizes total travel time while simultaneously avoiding conflicts in task assignments. For the cost calculation and routing, we employ reservation-based A* and R* path planners. Experimental results revealed that our method achieves a high 92.5% conflict-free success rate, with only a 7.49% performance gap compared to the centralized Hungarian method, while outperforming the heuristic decentralized baseline based on greedy approach. Additionally, the framework exhibits scalability with up to 20 agents with allocation processing of 2.8 s and robustness in responding to dynamically generated tasks, underscoring its potential for real-world applications in complex multi-agent scenarios.

Submi...

Submitted to IEEE Intelligent Vehicle Symposium (2025)

EdgeGFL: Rethinking Edge Information in Graph Feature Preference Learning 2025-02-04
Show

Graph Neural Networks (GNNs) have significant advantages in handling non-Euclidean data and have been widely applied across various areas, thus receiving increasing attention in recent years. The framework of GNN models mainly includes the information propagation phase and the aggregation phase, treating nodes and edges as information entities and propagation channels, respectively. However, most existing GNN models face the challenge of disconnection between node and edge feature information, as these models typically treat the learning of edge and node features as independent tasks. To address this limitation, we aim to develop an edge-empowered graph feature preference learning framework that can capture edge embeddings to assist node embeddings. By leveraging the learned multidimensional edge feature matrix, we construct multi-channel filters to more effectively capture accurate node features, thereby obtaining the non-local structural characteristics and fine-grained high-order node features. Specifically, the inclusion of multidimensional edge information enhances the functionality and flexibility of the GNN model, enabling it to handle complex and diverse graph data more effectively. Additionally, integrating relational representation learning into the message passing framework allows graph nodes to receive more useful information, thereby facilitating node representation learning. Finally, experiments on four real-world heterogeneous graphs demonstrate the effectiveness of theproposed model.

Orientation-Aware Graph Neural Networks for Protein Structure Representation Learning 2025-02-04
Show

By folding into particular 3D structures, proteins play a key role in living beings. To learn meaningful representation from a protein structure for downstream tasks, not only the global backbone topology but the local fine-grained orientational relations between amino acids should also be considered. In this work, we propose the Orientation-Aware Graph Neural Networks (OAGNNs) to better sense the geometric characteristics in protein structure (e.g. inner-residue torsion angles, inter-residue orientations). Extending a single weight from a scalar to a 3D vector, we construct a rich set of geometric-meaningful operations to process both the classical and SO(3) representations of a given structure. To plug our designed perceptron unit into existing Graph Neural Networks, we further introduce an equivariant message passing paradigm, showing superior versatility in maintaining SO(3)-equivariance at the global scale. Experiments have shown that our OAGNNs have a remarkable ability to sense geometric orientational features compared to classical networks. OAGNNs have also achieved state-of-the-art performance on various computational biology applications related to protein 3D structures. The code is available at https://github.com/Ced3-han/OAGNN/tree/main.

Accep...

Accepetd in RECOMB 2025

Combinatorial Optimization Perspective based Framework for Multi-behavior Recommendation 2025-02-04
Show

In real-world recommendation scenarios, users engage with items through various types of behaviors. Leveraging diversified user behavior information for learning can enhance the recommendation of target behaviors (e.g., buy), as demonstrated by recent multi-behavior methods. The mainstream multi-behavior recommendation framework consists of two steps: fusion and prediction. Recent approaches utilize graph neural networks for multi-behavior fusion and employ multi-task learning paradigms for joint optimization in the prediction step, achieving significant success. However, these methods have limited perspectives on multi-behavior fusion, which leads to inaccurate capture of user behavior patterns in the fusion step. Moreover, when using multi-task learning for prediction, the relationship between the target task and auxiliary tasks is not sufficiently coordinated, resulting in negative information transfer. To address these problems, we propose a novel multi-behavior recommendation framework based on the combinatorial optimization perspective, named COPF. Specifically, we treat multi-behavior fusion as a combinatorial optimization problem, imposing different constraints at various stages of each behavior to restrict the solution space, thus significantly enhancing fusion efficiency (COGCN). In the prediction step, we improve both forward and backward propagation during the generation and aggregation of multiple experts to mitigate negative transfer caused by differences in both feature and label distributions (DFME). Comprehensive experiments on three real-world datasets indicate the superiority of COPF. Further analyses also validate the effectiveness of the COGCN and DFME modules. Our code is available at https://github.com/1918190/COPF.

Accep...

Accepted by KDD 2025 Research Track

Graph Neural Networks for O-RAN Mobility Management: A Link Prediction Approach 2025-02-04
Show

Mobility performance has been a key focus in cellular networks up to 5G. To enhance handover (HO) performance, 3GPP introduced Conditional Handover (CHO) and Layer 1/Layer 2 Triggered Mobility (LTM) mechanisms in 5G. While these reactive HO strategies address the trade-off between HO failures (HOF) and ping-pong effects, they often result in inefficient radio resource utilization due to additional HO preparations. To overcome these challenges, this article proposes a proactive HO framework for mobility management in O-RAN, leveraging user-cell link predictions to identify the optimal target cell for HO. We explore various categories of Graph Neural Networks (GNNs) for link prediction and analyze the complexity of applying them to the mobility management domain. Two GNN models are compared using a real-world dataset, with experimental results demonstrating their ability to capture the dynamic and graph-structured nature of cellular networks. Finally, we present key insights from our study and outline future steps to enable the integration of GNN-based link prediction for mobility management in 6G networks.

7 pag...

7 pages, 2 figures, 2 tables. Submitted to IEEE Vehicular Technology Magazine, Special Issue on "AI for 6G O-RAN Intelligent, Cost-Efficient and Secure Automation"

LightGNN: Simple Graph Neural Network for Recommendation 2025-02-04
Show

Graph neural networks (GNNs) have demonstrated superior performance in collaborative recommendation through their ability to conduct high-order representation smoothing, effectively capturing structural information within users' interaction patterns. However, existing GNN paradigms face significant challenges in scalability and robustness when handling large-scale, noisy, and real-world datasets. To address these challenges, we present LightGNN, a lightweight and distillation-based GNN pruning framework designed to substantially reduce model complexity while preserving essential collaboration modeling capabilities. Our LightGNN framework introduces a computationally efficient pruning module that adaptively identifies and removes redundant edges and embedding entries for model compression. The framework is guided by a resource-friendly hierarchical knowledge distillation objective, whose intermediate layer augments the observed graph to maintain performance, particularly in high-rate compression scenarios. Extensive experiments on public datasets demonstrate LightGNN's effectiveness, significantly improving both computational efficiency and recommendation accuracy. Notably, LightGNN achieves an 80% reduction in edge count and 90% reduction in embedding entries while maintaining performance comparable to more complex state-of-the-art baselines. The implementation of our LightGNN framework is available at the github repository: https://github.com/HKUDS/LightGNN.

Accep...

Accepted to WSDM 2025

P4GCN: Vertical Federated Social Recommendation with Privacy-Preserving Two-Party Graph Convolution Network 2025-02-04
Show

In recent years, graph neural networks (GNNs) have been commonly utilized for social recommendation systems. However, real-world scenarios often present challenges related to user privacy and business constraints, inhibiting direct access to valuable social information from other platforms. While many existing methods have tackled matrix factorization-based social recommendations without direct social data access, developing GNN-based federated social recommendation models under similar conditions remains largely unexplored. To address this issue, we propose a novel vertical federated social recommendation method leveraging privacy-preserving two-party graph convolution networks (P4GCN) to enhance recommendation accuracy without requiring direct access to sensitive social information. First, we introduce a Sandwich-Encryption module to ensure comprehensive data privacy during the collaborative computing process. Second, we provide a thorough theoretical analysis of the privacy guarantees, considering the participation of both curious and honest parties. Extensive experiments on four real-world datasets demonstrate that P4GCN outperforms state-of-the-art methods in terms of recommendation accuracy.

Accepted by WWW25
RL-MILP Solver: A Reinforcement Learning Approach for Solving Mixed-Integer Linear Programs with Graph Neural Networks 2025-02-04
Show

Mixed-integer linear programming (MILP) is a widely used optimization technique across various fields. Existing $\textit{end-to-end learning}$ methods for MILP generate values for a subset of decision variables and delegate the remaining problem to traditional MILP solvers. However, this approach often fails to guarantee solution feasibility (i.e., satisfying all constraints) due to inaccurate predictions and primarily focuses on binary decision variables. Satisfying all constraints is a prerequisite for obtaining the optimal solution, and the feasibility issue becomes even more critical with non-binary integer (integer, for short) variables. Thus, addressing the feasibility of MILP involving integer variables is crucial. To address these challenges, we propose a novel reinforcement learning (RL)-based solver that not only finds the first feasible solution but also incrementally discovers better feasible solutions without delegating the remainder to off-the-shelf solvers. Our experimental results demonstrate that the proposed method achieves (near-)optimal solutions.

Exten...

Extended version (16 pages, 7 figures). Accepted at the 2025 AAAI Workshop on AI to Accelerate Science and Engineering (AI2ASE)

Query-Based and Unnoticeable Graph Injection Attack from Neighborhood Perspective 2025-02-04
Show

The robustness of Graph Neural Networks (GNNs) has become an increasingly important topic due to their expanding range of applications. Various attack methods have been proposed to explore the vulnerabilities of GNNs, ranging from Graph Modification Attacks (GMA) to the more practical and flexible Graph Injection Attacks (GIA). However, existing methods face two key challenges: (i) their reliance on surrogate models, which often leads to reduced attack effectiveness due to structural differences and prior biases, and (ii) existing GIA methods often sacrifice attack success rates in undefended settings to bypass certain defense models, thereby limiting their overall effectiveness. To overcome these limitations, we propose QUGIA, a Query-based and Unnoticeable Graph Injection Attack. QUGIA injects nodes by first selecting edges based on victim node connections and then generating node features using a Bayesian framework. This ensures that the injected nodes are similar to the original graph nodes, implicitly preserving homophily and making the attack more unnoticeable. Unlike previous methods, QUGIA does not rely on surrogate models, thereby avoiding performance degradation and achieving better generalization. Extensive experiments on six real-world datasets with diverse characteristics demonstrate that QUGIA achieves unnoticeable attacks and outperforms state-of-the-art attackers. The code will be released upon acceptance.

Large-scale Time-Varying Portfolio Optimisation using Graph Attention Networks 2025-02-03
Show

Apart from assessing individual asset performance, investors in financial markets also need to consider how a set of firms performs collectively as a portfolio. Whereas traditional Markowitz-based mean-variance portfolios are widespread, network-based optimisation techniques offer a more flexible tool to capture complex interdependencies between asset values. However, most of the existing studies do not contain firms at risk of default and remove any firms that drop off indices over a certain time. This is the first study to also incorporate such firms in portfolio optimisation on a large scale. We propose and empirically test a novel method that leverages Graph Attention networks (GATs), a subclass of Graph Neural Networks (GNNs). GNNs, as deep learning-based models, can exploit network data to uncover nonlinear relationships. Their ability to handle high-dimensional data and accommodate customised layers for specific purposes makes them appealing for large-scale problems such as mid- and small-cap portfolio optimisation. This study utilises 30 years of data on mid-cap firms, creating graphs of firms using distance correlation and the Triangulated Maximally Filtered Graph approach. These graphs are the inputs to a GAT model incorporating weight and allocation constraints and a loss function derived from the Sharpe ratio, thus focusing on maximising portfolio risk-adjusted returns. This new model is benchmarked against a network characteristic-based portfolio, a mean variance-based portfolio, and an equal-weighted portfolio. The results show that the portfolio produced by the GAT-based model outperforms all benchmarks and is consistently superior to other strategies over a long period, while also being informative of market dynamics.

39 pa...

39 pages, 10 figures, v2

Self-supervised Subgraph Neural Network With Deep Reinforcement Walk Exploration 2025-02-03
Show

Graph data, with its structurally variable nature, represents complex real-world phenomena like chemical compounds, protein structures, and social networks. Traditional Graph Neural Networks (GNNs) primarily utilize the message-passing mechanism, but their expressive power is limited and their prediction lacks explainability. To address these limitations, researchers have focused on graph substructures. Subgraph neural networks (SGNNs) and GNN explainers have emerged as potential solutions, but each has its limitations. SGNNs computes graph representations based on the bags of subgraphs to enhance the expressive power. However, they often rely on predefined algorithm-based sampling strategies, which is inefficient. GNN explainers adopt data-driven approaches to generate important subgraphs to provide explanation. Nevertheless, their explanation is difficult to be translated into practical improvements on GNNs. To overcome these issues, we propose a novel self-supervised framework that integrates SGNNs with the generation approach of GNN explainers, named the Reinforcement Walk Exploration SGNN (RWE-SGNN). Our approach features a sampling model trained in an explainer fashion, optimizing subgraphs to enhance model performance. To achieve a data-driven sampling approach, unlike traditional subgraph generation approaches, we propose a novel walk exploration process, which efficiently extracts important substructures, simplifying the embedding process and avoiding isomorphism problems. Moreover, we prove that our proposed walk exploration process has equivalent generation capability to the traditional subgraph generation process. Experimental results on various graph datasets validate the effectiveness of our proposed method, demonstrating significant improvements in performance and precision.

20 pages, 5 figures
GNN-DT: Graph Neural Network Enhanced Decision Transformer for Efficient Optimization in Dynamic Environments 2025-02-03
Show

Reinforcement Learning (RL) methods used for solving real-world optimization problems often involve dynamic state-action spaces, larger scale, and sparse rewards, leading to significant challenges in convergence, scalability, and efficient exploration of the solution space. This study introduces GNN-DT, a novel Decision Transformer (DT) architecture that integrates Graph Neural Network (GNN) embedders with a novel residual connection between input and output tokens crucial for handling dynamic environments. By learning from previously collected trajectories, GNN-DT reduces dependence on accurate simulators and tackles the sparse rewards limitations of online RL algorithms. We evaluate GNN-DT on the complex electric vehicle (EV) charging optimization problem and prove that its performance is superior and requires significantly fewer training trajectories, thus improving sample efficiency compared to existing DT baselines. Furthermore, GNN-DT exhibits robust generalization to unseen environments and larger action spaces, addressing a critical gap in prior DT-based approaches

E2Former: A Linear-time Efficient and Equivariant Transformer for Scalable Molecular Modeling 2025-02-03
Show

Equivariant Graph Neural Networks (EGNNs) have demonstrated significant success in modeling microscale systems, including those in chemistry, biology and materials science. However, EGNNs face substantial computational challenges due to the high cost of constructing edge features via spherical tensor products, making them impractical for large-scale systems. To address this limitation, we introduce E2Former, an equivariant and efficient transformer architecture that incorporates the Wigner $6j$ convolution (Wigner $6j$ Conv). By shifting the computational burden from edges to nodes, the Wigner $6j$ Conv reduces the complexity from $O(

\mathcal{E}
FireCastNet: Earth-as-a-Graph for Seasonal Fire Prediction 2025-02-03
Show

With climate change expected to exacerbate fire weather conditions, the accurate and timely anticipation of wildfires becomes increasingly crucial for disaster mitigation. In this study, we utilize SeasFire, a comprehensive global wildfire dataset with climate, vegetation, oceanic indices, and human-related variables, to enable seasonal wildfire forecasting with machine learning. For the predictive analysis, we present FireCastNet, a novel architecture which combines a 3D convolutional encoder with GraphCast, originally developed for global short-term weather forecasting using graph neural networks. FireCastNet is trained to capture the context leading to wildfires, at different spatial and temporal scales. Our investigation focuses on assessing the effectiveness of our model in predicting the presence of burned areas at varying forecasting time horizons globally, extending up to six months into the future, and on how different spatial or/and temporal context affects the performance. Our findings demonstrate the potential of deep learning models in seasonal fire forecasting; longer input time-series leads to more robust predictions, while integrating spatial information to capture wildfire spatio-temporal dynamics boosts performance. Finally, our results hint that in order to enhance performance at longer forecasting horizons, a larger receptive field spatially needs to be considered.

Transformers trained on proteins can learn to attend to Euclidean distance 2025-02-03
Show

While conventional Transformers generally operate on sequence data, they can be used in conjunction with structure models, typically SE(3)-invariant or equivariant graph neural networks (GNNs), for 3D applications such as protein structure modelling. These hybrids typically involve either (1) preprocessing/tokenizing structural features as input for Transformers or (2) taking Transformer embeddings and processing them within a structural representation. However, there is evidence that Transformers can learn to process structural information on their own, such as the AlphaFold3 structural diffusion model. In this work we show that Transformers can function independently as structure models when passed linear embeddings of coordinates. We first provide a theoretical explanation for how Transformers can learn to filter attention as a 3D Gaussian with learned variance. We then validate this theory using both simulated 3D points and in the context of masked token prediction for proteins. Finally, we show that pre-training protein Transformer encoders with structure improves performance on a downstream task, yielding better performance than custom structural models. Together, this work provides a basis for using standard Transformers as hybrid structure-language models.

E(n)-equivariant Graph Neural Cellular Automata 2025-02-03
Show

Cellular automata (CAs) are notable computational models exhibiting rich dynamics emerging from the local interaction of cells arranged in a regular lattice. Graph CAs (GCAs) generalise standard CAs by allowing for arbitrary graphs rather than regular lattices, similar to how Graph Neural Networks (GNNs) generalise Convolutional NNs. Recently, Graph Neural CAs (GNCAs) have been proposed as models built on top of standard GNNs that can be trained to approximate the transition rule of any arbitrary GCA. We note that existing GNCAs can violate the locality principle of CAs by leveraging global information and, furthermore, are anisotropic in the sense that their transition rules are not equivariant to isometries of the nodes' spatial locations. However, it is desirable for instances related by such transformations to be treated identically by the model. By replacing standard graph convolutions with E(n)-equivariant ones, we avoid anisotropy by design and propose a class of isotropic automata that we call E(n)-GNCAs. These models are lightweight, but can nevertheless handle large graphs, capture complex dynamics and exhibit emergent self-organising behaviours. We showcase the broad and successful applicability of E(n)-GNCAs on three different tasks: (i) isotropic pattern formation, (ii) graph auto-encoding, and (iii) simulation of E(n)-equivariant dynamical systems.

Can message-passing GNN approximate triangular factorizations of sparse matrices? 2025-02-03
Show

We study fundamental limitations of Graph Neural Networks (GNNs) for learning sparse matrix preconditioners. While recent works have shown promising results using GNNs to predict incomplete factorizations, we demonstrate that the local nature of message passing creates inherent barriers for capturing non-local dependencies required for optimal preconditioning. We introduce a new benchmark dataset of matrices where good sparse preconditioners exist but require non-local computations, constructed using both synthetic examples and real-world matrices. Our experimental results show that current GNN architectures struggle to approximate these preconditioners, suggesting the need for new architectural approaches beyond traditional message passing networks. We provide theoretical analysis and empirical evidence to explain these limitations, with implications for the broader use of GNNs in numerical linear algebra.

Leveraging Multi-facet Paths for Heterogeneous Graph Representation Learning 2025-02-03
Show

Recent advancements in graph neural networks (GNNs) and heterogeneous GNNs (HGNNs) have advanced node embeddings and relationship learning for various tasks. However, existing methods often rely on domain-specific predefined meta-paths, which are coarse-grained and focus solely on aspects like node type, limiting their ability to capture complex interactions. We introduce MF2Vec, a model that uses multi-faceted (fine-grained) paths instead of predefined meta-paths. MF2Vec extracts paths via random walks and generates multi-faceted vectors, ignoring predefined schemas. This method learns diverse aspects of nodes and their relationships, constructs a homogeneous network, and creates node embeddings for classification, link prediction, and clustering. Extensive experiments show that MF2Vec outperforms existing methods, offering a more flexible and comprehensive framework for analyzing complex networks. The code is available at https://anonymous.4open.science/r/MF2Vec-6ABC.

Learning Traffic Anomalies from Generative Models on Real-Time Observations 2025-02-03
Show

Accurate detection of traffic anomalies is crucial for effective urban traffic management and congestion mitigation. We use the Spatiotemporal Generative Adversarial Network (STGAN) framework combining Graph Neural Networks and Long Short-Term Memory networks to capture complex spatial and temporal dependencies in traffic data. We apply STGAN to real-time, minute-by-minute observations from 42 traffic cameras across Gothenburg, Sweden, collected over several months in 2020. The images are processed to compute a flow metric representing vehicle density, which serves as input for the model. Training is conducted on data from April to November 2020, and validation is performed on a separate dataset from November 14 to 23, 2020. Our results demonstrate that the model effectively detects traffic anomalies with high precision and low false positive rates. The detected anomalies include camera signal interruptions, visual artifacts, and extreme weather conditions affecting traffic flow.

Learning from Linear Algebra: A Graph Neural Network Approach to Preconditioner Design for Conjugate Gradient Solvers 2025-02-03
Show

Large linear systems are ubiquitous in modern computational science and engineering. The main recipe for solving them is the use of Krylov subspace iterative methods with well-designed preconditioners. Recently, GNNs have been shown to be a promising tool for designing preconditioners to reduce the overall computational cost of iterative methods by constructing them more efficiently than with classical linear algebra techniques. Preconditioners designed with these approaches cannot outperform those designed with classical methods in terms of the number of iterations in CG. In our work, we recall well-established preconditioners from linear algebra and use them as a starting point for training the GNN to obtain preconditioners that reduce the condition number of the system more significantly than classical preconditioners. Numerical experiments show that our approach outperforms both classical and neural network-based methods for an important class of parametric partial differential equations. We also provide a heuristic justification for the loss function used and show that preconditioners obtained by learning with this loss function reduce the condition number in a more desirable way for CG.

Clarify Confused Nodes via Separated Learning 2025-02-03
Show

Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue to design generic models with shared weights between heterophilous and homophilous nodes. Despite the incorporation of high-order messages or multi-channel architectures, these efforts often fall short. A minority of studies attempt to train different node groups separately but suffer from inappropriate separation metrics and low efficiency. In this paper, we first propose a new metric, termed Neighborhood Confusion (NC), to facilitate a more reliable separation of nodes. We observe that node groups with different levels of NC values exhibit certain differences in intra-group accuracy and visualized embeddings. These pave the way for Neighborhood Confusion-guided Graph Convolutional Network (NCGCN), in which nodes are grouped by their NC values and accept intra-group weight sharing and message passing. Extensive experiments on both homophilous and heterophilous benchmarks demonstrate that our framework can effectively separate nodes and yield significant performance improvement compared to the latest methods. The source code will be available in https://github.com/GISec-Team/NCGNN.

Accep...

Accepted by IEEE Transactions on Pattern Analysis and Machine Intelligence

Boosting Graph Robustness Against Backdoor Attacks: An Over-Similarity Perspective 2025-02-03
Show

Graph Neural Networks (GNNs) have achieved notable success in tasks such as social and transportation networks. However, recent studies have highlighted the vulnerability of GNNs to backdoor attacks, raising significant concerns about their reliability in real-world applications. Despite initial efforts to defend against specific graph backdoor attacks, existing defense methods face two main challenges: either the inability to establish a clear distinction between triggers and clean nodes, resulting in the removal of many clean nodes, or the failure to eliminate the impact of triggers, making it challenging to restore the target nodes to their pre-attack state. Through empirical analysis of various existing graph backdoor attacks, we observe that the triggers generated by these methods exhibit over-similarity in both features and structure. Based on this observation, we propose a novel graph backdoor defense method SimGuard. We first utilizes a similarity-based metric to detect triggers and then employs contrastive learning to train a backdoor detector that generates embeddings capable of separating triggers from clean nodes, thereby improving detection efficiency. Extensive experiments conducted on real-world datasets demonstrate that our proposed method effectively defends against various graph backdoor attacks while preserving performance on clean nodes. The code will be released upon acceptance.

PerfSeer: An Efficient and Accurate Deep Learning Models Performance Predictor 2025-02-03
Show

Predicting the performance of deep learning (DL) models, such as execution time and resource utilization, is crucial for Neural Architecture Search (NAS), DL cluster schedulers, and other technologies that advance deep learning. The representation of a model is the foundation for its performance prediction. However, existing methods cannot comprehensively represent diverse model configurations, resulting in unsatisfactory accuracy. To address this, we represent a model as a graph that includes the topology, along with the node, edge, and global features, all of which are crucial for effectively capturing the performance of the model. Based on this representation, we propose PerfSeer, a novel predictor that uses a Graph Neural Network (GNN)-based performance prediction model, SeerNet. SeerNet fully leverages the topology and various features, while incorporating optimizations such as Synergistic Max-Mean aggregation (SynMM) and Global-Node Perspective Boost (GNPB) to capture the critical performance information more effectively, enabling it to predict the performance of models accurately. Furthermore, SeerNet can be extended to SeerNet-Multi by using Project Conflicting Gradients (PCGrad), enabling efficient simultaneous prediction of multiple performance metrics without significantly affecting accuracy. We constructed a dataset containing performance metrics for 53k+ model configurations, including execution time, memory usage, and Streaming Multiprocessor (SM) utilization during both training and inference. The evaluation results show that PerfSeer outperforms nn-Meter, Brp-NAS, and DIPPM.

Efficient and Scalable Density Functional Theory Hamiltonian Prediction through Adaptive Sparsity 2025-02-03
Show

Hamiltonian matrix prediction is pivotal in computational chemistry, serving as the foundation for determining a wide range of molecular properties. While SE(3) equivariant graph neural networks have achieved remarkable success in this domain, their substantial computational cost-driven by high-order tensor product (TP) operations-restricts their scalability to large molecular systems with extensive basis sets. To address this challenge, we introduce SPHNet, an efficient and scalable equivariant network that incorporates adaptive sparsity into Hamiltonian prediction. SPHNet employs two innovative sparse gates to selectively constrain non-critical interaction combinations, significantly reducing tensor product computations while maintaining accuracy. To optimize the sparse representation, we develop a Three-phase Sparsity Scheduler, ensuring stable convergence and achieving high performance at sparsity rates of up to 70 percent. Extensive evaluations on QH9 and PubchemQH datasets demonstrate that SPHNet achieves state-of-the-art accuracy while providing up to a 7x speedup over existing models. Beyond Hamiltonian prediction, the proposed sparsification techniques also hold significant potential for improving the efficiency and scalability of other SE(3) equivariant networks, further broadening their applicability and impact.

Learning Efficient Positional Encodings with Graph Neural Networks 2025-02-03
Show

Positional encodings (PEs) are essential for effective graph representation learning because they provide position awareness in inherently position-agnostic transformer architectures and increase the expressive capacity of Graph Neural Networks (GNNs). However, designing powerful and efficient PEs for graphs poses significant challenges due to the absence of canonical node ordering and the scale of the graph. {In this work, we identify four key properties that graph PEs should satisfy}: stability, expressive power, scalability, and genericness. We find that existing eigenvector-based PE methods often fall short of jointly satisfying these criteria. To address this gap, we introduce PEARL, a novel framework of learnable PEs for graphs. Our primary insight is that message-passing GNNs function as nonlinear mappings of eigenvectors, enabling the design of GNN architectures for generating powerful and efficient PEs. A crucial challenge lies in initializing node attributes in a manner that is both expressive and permutation equivariant. We tackle this by initializing GNNs with random node inputs or standard basis vectors, thereby unlocking the expressive power of message-passing operations, while employing statistical pooling functions to maintain permutation equivariance. Our analysis demonstrates that PEARL approximates equivariant functions of eigenvectors with linear complexity, while rigorously establishing its stability and high expressive power. Experimental evaluations show that PEARL outperforms lightweight versions of eigenvector-based PEs and achieves comparable performance to full eigenvector-based PEs, but with one or two orders of magnitude lower complexity. Our code is available at https://github.com/ehejin/Pearl-PE.

About

Daily ArXiv Papers.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%