Skip to content

[AutoBump] Merge with fixes of d57479cf (Feb 19) (61) #605

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: bump_to_a6f48ed0
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions mlir/include/mlir/Dialect/Tosa/IR/TosaOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -1196,9 +1196,9 @@ def Tosa_SelectOp : Tosa_ElementwiseOp<"select"> {
}];

let arguments = (ins
Tosa_I1Tensor:$pred,
Tosa_Tensor:$on_true,
Tosa_Tensor:$on_false
Tosa_I1Tensor:$input1,
Tosa_Tensor:$input2,
Tosa_Tensor:$input3
);

let results = (outs
Expand All @@ -1208,7 +1208,7 @@ def Tosa_SelectOp : Tosa_ElementwiseOp<"select"> {
let hasFolder = 1;

let assemblyFormat = [{
operands attr-dict `:` `(` type($pred) `,` type($on_true) `,` type($on_false)
operands attr-dict `:` `(` type($input1) `,` type($input2) `,` type($input3)
`)` `->` type($output)
}];
}
Expand Down
20 changes: 10 additions & 10 deletions mlir/lib/Dialect/Tosa/IR/TosaCanonicalizations.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -221,12 +221,12 @@ struct SelectLogicalNotOptimization : public OpRewritePattern<tosa::SelectOp> {
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(tosa::SelectOp op,
PatternRewriter &rewriter) const override {
auto notOp = op.getPred().getDefiningOp<tosa::LogicalNotOp>();
auto notOp = op.getInput1().getDefiningOp<tosa::LogicalNotOp>();
if (!notOp)
return failure();
rewriter.modifyOpInPlace(op, [&]() {
op.getOperation()->setOperands(
{notOp.getInput1(), op.getOnFalse(), op.getOnTrue()});
{notOp.getInput1(), op.getInput3(), op.getInput2()});
});
return success();
}
Expand All @@ -247,7 +247,7 @@ struct SelectToClampOptimization : public OpRewritePattern<tosa::SelectOp> {
LogicalResult matchAndRewrite(tosa::SelectOp op,
PatternRewriter &rewriter) const override {

auto geq = op.getPred().getDefiningOp<tosa::GreaterEqualOp>();
auto geq = op.getInput1().getDefiningOp<tosa::GreaterEqualOp>();
if (!geq) {
return rewriter.notifyMatchFailure(op,
"Predicate is not a GreaterEqualOp");
Expand Down Expand Up @@ -297,8 +297,8 @@ struct SelectToClampOptimization : public OpRewritePattern<tosa::SelectOp> {
return a.getSplatValue<APFloat>() == b.getSplatValue<APFloat>();
};

auto onFalse = op.getOnFalse();
auto onTrue = op.getOnTrue();
auto onFalse = op.getInput3();
auto onTrue = op.getInput2();
DenseElementsAttr onFalseAttr;
DenseElementsAttr onTrueAttr;

Expand Down Expand Up @@ -1722,18 +1722,18 @@ OpFoldResult SliceOp::fold(FoldAdaptor adaptor) {
}

OpFoldResult tosa::SelectOp::fold(FoldAdaptor adaptor) {
if (getOnTrue() == getOnFalse())
return getOnTrue();
if (getInput2() == getInput3())
return getInput2();

auto predicate =
llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getPred());
llvm::dyn_cast_if_present<DenseIntElementsAttr>(adaptor.getInput1());
if (!predicate)
return {};

if (!predicate.isSplat())
return {};
return predicate.getSplatValue<APInt>().getBoolValue() ? getOnTrue()
: getOnFalse();
return predicate.getSplatValue<APInt>().getBoolValue() ? getInput2()
: getInput3();
}

OpFoldResult TileOp::fold(FoldAdaptor adaptor) {
Expand Down
6 changes: 3 additions & 3 deletions mlir/lib/Dialect/Tosa/Transforms/TosaMakeBroadcastable.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -169,9 +169,9 @@ struct ConvertTosaOp<tosa::SelectOp> : public OpRewritePattern<tosa::SelectOp> {
LogicalResult matchAndRewrite(tosa::SelectOp tosaOp,
PatternRewriter &rewriter) const override {

Value input1 = tosaOp.getPred();
Value input2 = tosaOp.getOnTrue();
Value input3 = tosaOp.getOnFalse();
Value input1 = tosaOp.getInput1();
Value input2 = tosaOp.getInput2();
Value input3 = tosaOp.getInput3();
Value output = tosaOp.getResult();

auto outputType = dyn_cast<RankedTensorType>(output.getType());
Expand Down