A machine learning classification project that helps an Internet Service Provider in keeping existing subscribers by predicting if an existing customer will churn or not.
I highly recommend you to check out the slides for getting an overview of the project.
Internet Service Provider Customer Churn Dataset by Mehmet Sabri Kunt on Kaggle.
Binary Classification of predicting customer churn.
ROC-AUC
Algorithm | Mean AUC-ROC | Standard Deviation |
---|---|---|
Logistic Regression | 0.9624 | 0.0027 |
K-Nearest Neighbors | 0.9748 | 0.0020 |
Decision Tree | 0.9751 | 0.0021 |
Random Forest | 0.9827 | 0.0015 |
XGBoost | 0.9840 | 0.0014 |
Train Set: 0.9979611536456878
Test Set: 0.9842082218633272
Train Set: 97.95469985401037
Test Set: 95.16816245127367
Train Set: 97.72774717774959
Test Set: 94.67
- Numpy
- Pandas
- Matplotlib
- Scikit-Learn
- Seaborn
- XGBoost
- Optuna
- DVC
- AWS