Airavata
This model is a 7B OpenHathi model finetuned on IndicInstruct dataset which is a collection of instruction datasets (Anudesh, wikiHow, Flan v2, Dolly, Anthropic-HHH, OpenAssistant v1, and LymSys-Chat). Please check the corresponding huggingface dataset card for more details.
This was trained as part of the technical report Airavata: Introducing Hindi Instruction-tuned LLM. The codebase used to train and evaluate this model can be found at https://github.com/AI4Bharat/IndicInstruct.
Usage
Clone https://github.com/AI4Bharat/IndicInstruct and install the required dependencies. Then download or clone this model to the same machine.
Input Format
The model is trained to use the chat format similar to open-instruct code repository (note the newlines):
<|user|>
Your message here!
<|assistant|>
For best results, format all inputs in this manner. Make sure to include a newline after <|assistant|>
, this can affect generation quality quite a bit.
Hyperparameters
We fine-tune OpenHathi base model on the aforementioned IndicInstruct dataset with LoRA. The hyperparameters for the LoRA fine-tuning are listed below:
- LoRA Rank: 16
- LoRA alpha: 32
- LoRA Dropout: 0.05
- LoRA Target Modules: ["q_proj", "v_proj", "k_proj", "down_proj", "gate_proj", "up_proj"]
- Epochs: 4
- Learning rate: 5e-4
- Batch Size: 128
- Floating Point Precision: bfloat16
We recommend the readers to check out our official blog post for more details on the model training, ablations and evaluation results.
Example
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
device = "cuda" if torch.cuda.is_available() else "cpu"
def create_prompt_with_chat_format(messages, bos="<s>", eos="</s>", add_bos=True):
formatted_text = ""
for message in messages:
if message["role"] == "system":
formatted_text += "<|system|>\n" + message["content"] + "\n"
elif message["role"] == "user":
formatted_text += "<|user|>\n" + message["content"] + "\n"
elif message["role"] == "assistant":
formatted_text += "<|assistant|>\n" + message["content"].strip() + eos + "\n"
else:
raise ValueError(
"Tulu chat template only supports 'system', 'user' and 'assistant' roles. Invalid role: {}.".format(
message["role"]
)
)
formatted_text += "<|assistant|>\n"
formatted_text = bos + formatted_text if add_bos else formatted_text
return formatted_text
def inference(input_prompts, model, tokenizer):
input_prompts = [
create_prompt_with_chat_format([{"role": "user", "content": input_prompt}], add_bos=False)
for input_prompt in input_prompts
]
encodings = tokenizer(input_prompts, padding=True, return_tensors="pt")
encodings = encodings.to(device)
with torch.inference_mode():
outputs = model.generate(encodings.input_ids, do_sample=False, max_new_tokens=250)
output_texts = tokenizer.batch_decode(outputs.detach(), skip_special_tokens=True)
input_prompts = [
tokenizer.decode(tokenizer.encode(input_prompt), skip_special_tokens=True) for input_prompt in input_prompts
]
output_texts = [output_text[len(input_prompt) :] for input_prompt, output_text in zip(input_prompts, output_texts)]
return output_texts
model_name = "ai4bharat/Airavata"
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to(device)
input_prompts = [
"मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं।",
"मैं अपने समय प्रबंधन कौशल को कैसे सुधार सकता हूँ? मुझे पांच बिंदु बताएं और उनका वर्णन करें।",
]
outputs = inference(input_prompts, model, tokenizer)
print(outputs)
Citation
@article{gala2024airavata,
title = {Airavata: Introducing Hindi Instruction-tuned LLM},
author = {Jay Gala and Thanmay Jayakumar and Jaavid Aktar Husain and Aswanth Kumar M and Mohammed Safi Ur Rahman Khan and Diptesh Kanojia and Ratish Puduppully and Mitesh M. Khapra and Raj Dabre and Rudra Murthy and Anoop Kunchukuttan},
year = {2024},
journal = {arXiv preprint arXiv: 2401.15006}
}
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 45.52 |
AI2 Reasoning Challenge (25-Shot) | 46.50 |
HellaSwag (10-Shot) | 69.26 |
MMLU (5-Shot) | 43.90 |
TruthfulQA (0-shot) | 40.62 |
Winogrande (5-shot) | 68.82 |
GSM8k (5-shot) | 4.02 |
- Downloads last month
- 4,121
Model tree for ai4bharat/Airavata
Dataset used to train ai4bharat/Airavata
Spaces using ai4bharat/Airavata 6
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard46.500
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard69.260
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard43.900
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard40.620
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard68.820
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard4.020