mt5-small-finetuned-Drishtants-summaries

This model is a fine-tuned version of google/mt5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8276
  • Rouge1: 0.3953
  • Rouge2: 0.2206
  • Rougel: 0.3789
  • Rougelsum: 0.3822

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 40

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
24.1138 1.0 13 15.3479 0.0044 0.0 0.0043 0.0044
19.7323 2.0 26 13.7879 0.0044 0.0 0.0043 0.0044
18.329 3.0 39 11.7699 0.0042 0.0 0.0039 0.0042
15.8092 4.0 52 12.9758 0.0067 0.0 0.0064 0.0067
13.8072 5.0 65 8.1803 0.0048 0.0 0.0048 0.0048
11.9323 6.0 78 6.4151 0.0048 0.0 0.0048 0.0048
10.8486 7.0 91 5.3122 0.0067 0.0 0.0067 0.0067
10.2067 8.0 104 5.1497 0.0098 0.0 0.0097 0.0096
9.4972 9.0 117 4.9039 0.0136 0.0 0.0135 0.0132
8.4609 10.0 130 3.9617 0.0272 0.0013 0.0273 0.0269
7.2721 11.0 143 3.4252 0.0526 0.0093 0.0522 0.0492
5.943 12.0 156 3.1756 0.0746 0.0170 0.0640 0.0658
5.5122 13.0 169 2.9797 0.0649 0.0121 0.0610 0.0573
5.1628 14.0 182 2.8133 0.0818 0.0215 0.0738 0.0733
4.9023 15.0 195 2.6725 0.0798 0.0262 0.0767 0.0765
4.4493 16.0 208 2.5408 0.0924 0.0348 0.0881 0.0891
4.3145 17.0 221 2.4332 0.0914 0.0361 0.0796 0.0800
3.978 18.0 234 2.3434 0.0952 0.0422 0.0835 0.0843
3.9377 19.0 247 2.2749 0.1289 0.0617 0.1138 0.1137
3.6415 20.0 260 2.2123 0.1701 0.0698 0.1471 0.1451
3.4801 21.0 273 2.1490 0.1682 0.0758 0.1497 0.1480
3.5114 22.0 286 2.0997 0.1885 0.0858 0.1658 0.1662
3.3784 23.0 299 2.0567 0.1971 0.0931 0.1730 0.1729
3.2501 24.0 312 2.0291 0.1969 0.0952 0.1752 0.1753
3.208 25.0 325 2.0057 0.1959 0.0883 0.1746 0.1753
3.0992 26.0 338 1.9769 0.1984 0.0961 0.1759 0.1762
2.9069 27.0 351 1.9474 0.1938 0.0975 0.1734 0.1734
3.0772 28.0 364 1.9259 0.1897 0.0978 0.1714 0.1710
2.8778 29.0 377 1.9098 0.1766 0.0934 0.1584 0.1582
2.8723 30.0 390 1.8937 0.1752 0.0860 0.1551 0.1551
2.8102 31.0 403 1.8786 0.1808 0.0889 0.1610 0.1603
2.8453 32.0 416 1.8660 0.1971 0.0919 0.1745 0.1752
2.925 33.0 429 1.8544 0.2724 0.1441 0.2562 0.2564
2.8222 34.0 442 1.8468 0.3749 0.2099 0.3583 0.3592
2.7711 35.0 455 1.8414 0.3950 0.2216 0.3742 0.3785
2.8176 36.0 468 1.8367 0.3953 0.2206 0.3789 0.3822
2.7044 37.0 481 1.8321 0.3947 0.2201 0.3781 0.3817
2.7696 38.0 494 1.8295 0.3953 0.2206 0.3789 0.3822
2.6015 39.0 507 1.8281 0.3953 0.2206 0.3789 0.3822
2.6849 40.0 520 1.8276 0.3953 0.2206 0.3789 0.3822

Framework versions

  • Transformers 4.47.1
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
15
Safetensors
Model size
300M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ak2603/mt5-small-finetuned-Drishtants-summaries

Base model

google/mt5-small
Finetuned
(384)
this model