Skip to content

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

License

Notifications You must be signed in to change notification settings

alexanderjaus/Mask2Former

This branch is up to date with facebookresearch/Mask2Former:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

9b0651c Â· May 20, 2022

History

21 Commits
Jan 13, 2022
Dec 20, 2021
Dec 3, 2021
Dec 20, 2021
Feb 9, 2022
Dec 20, 2021
Dec 17, 2021
Dec 3, 2021
Dec 3, 2021
Dec 3, 2021
Dec 3, 2021
Dec 20, 2021
Dec 17, 2021
May 20, 2022
Jan 19, 2022
May 20, 2022
Feb 21, 2022
Feb 21, 2022
Dec 3, 2021
Jan 20, 2022
Jan 20, 2022

Repository files navigation

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation (CVPR 2022)

Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Rohit Girdhar

[arXiv] [Project] [BibTeX]


Features

  • A single architecture for panoptic, instance and semantic segmentation.
  • Support major segmentation datasets: ADE20K, Cityscapes, COCO, Mapillary Vistas.

Updates

  • Add Google Colab demo.
  • Video instance segmentation is now supported! Please check our tech report for more details.

Installation

See installation instructions.

Getting Started

See Preparing Datasets for Mask2Former.

See Getting Started with Mask2Former.

Run our demo using Colab: Open In Colab

Integrated into Huggingface Spaces 🤗 using Gradio. Try out the Web Demo: Hugging Face Spaces

Replicate web demo and docker image is available here: Replicate

Advanced usage

See Advanced Usage of Mask2Former.

Model Zoo and Baselines

We provide a large set of baseline results and trained models available for download in the Mask2Former Model Zoo.

License

Shield: License: MIT

The majority of Mask2Former is licensed under a MIT License.

However portions of the project are available under separate license terms: Swin-Transformer-Semantic-Segmentation is licensed under the MIT license, Deformable-DETR is licensed under the Apache-2.0 License.

Citing Mask2Former

If you use Mask2Former in your research or wish to refer to the baseline results published in the Model Zoo, please use the following BibTeX entry.

@inproceedings{cheng2021mask2former,
  title={Masked-attention Mask Transformer for Universal Image Segmentation},
  author={Bowen Cheng and Ishan Misra and Alexander G. Schwing and Alexander Kirillov and Rohit Girdhar},
  journal={CVPR},
  year={2022}
}

If you find the code useful, please also consider the following BibTeX entry.

@inproceedings{cheng2021maskformer,
  title={Per-Pixel Classification is Not All You Need for Semantic Segmentation},
  author={Bowen Cheng and Alexander G. Schwing and Alexander Kirillov},
  journal={NeurIPS},
  year={2021}
}

Acknowledgement

Code is largely based on MaskFormer (https://github.com/facebookresearch/MaskFormer).

About

Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.3%
  • Cuda 9.5%
  • C++ 1.1%
  • Shell 0.1%