YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

MT5 Base Model for Chinese Question Generation

基于mt5的中文问题生成任务

可以通过安装question-generation包开始用

pip install question-generation

使用方法请参考github项目:https://github.com/algolet/question_generation

在线使用

可以直接在线使用我们的模型:https://www.algolet.com/applications/qg

通过transformers调用

import torch
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("algolet/mt5-base-chinese-qg")
model = AutoModelForSeq2SeqLM.from_pretrained("algolet/mt5-base-chinese-qg")
model.eval()

text = "在一个寒冷的冬天,赶集完回家的农夫在路边发现了一条冻僵了的蛇。他很可怜蛇,就把它放在怀里。当他身上的热气把蛇温暖以后,蛇很快苏醒了,露出了残忍的本性,给了农夫致命的伤害——咬了农夫一口。农夫临死之前说:“我竟然救了一条可怜的毒蛇,就应该受到这种报应啊!”"

text = "question generation: " + text
inputs = tokenizer(text,
                   return_tensors='pt',
                   truncation=True,
                   max_length=512)

with torch.no_grad():
  outs = model.generate(input_ids=inputs["input_ids"],
                        attention_mask=inputs["attention_mask"],
                        max_length=128,
                        no_repeat_ngram_size=4,
                        num_beams=4)

question = tokenizer.decode(outs[0], skip_special_tokens=True) 
questions = [q.strip() for q in  question.split("<sep>") if len(q.strip()) > 0]
print(questions)
['在寒冷的冬天,农夫在哪里发现了一条可怜的蛇?', '农夫是如何看待蛇的?', '当农夫遇到蛇时,他做了什么?'] 

指标

rouge-1: 0.4041

rouge-2: 0.2104

rouge-l: 0.3843


language:

  • zh

tags:

  • mt5
  • question generation

metrics:

  • rouge

Downloads last month
53
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.