Skip to content

Multi-task deep learning framework for multi-omics data analysis

License

Notifications You must be signed in to change notification settings

aliman80/OmiEmbed

This branch is 3 commits behind hashimsayed0/SubOmiEmbed:main.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e37905b · Dec 8, 2021

History

34 Commits
Nov 28, 2021
May 29, 2021
Dec 8, 2021
Nov 28, 2021
May 19, 2021
Nov 28, 2021
Nov 28, 2021
Nov 28, 2021
Nov 28, 2021
Dec 8, 2021
Dec 8, 2021
Jan 29, 2021
Dec 8, 2021
Nov 28, 2021
Nov 28, 2021
May 28, 2021
Nov 28, 2021
Dec 8, 2021
Nov 28, 2021
May 28, 2021
Jan 29, 2021
May 21, 2021
Nov 28, 2021

Repository files navigation

OmiEmbed+

OmiEmbed+: Representation Learning of Multi-omics Data Using Variational Autoencoders for Cancer Type Classification

This codebase is built upon https://github.com/zhangxiaoyu11/OmiEmbed

Introduction

OmiEmbed is a unified framework for deep learning-based omics data analysis, which supports:

  1. Multi-omics integration
  2. Dimensionality reduction
  3. Omics embedding learning
  4. Tumour type classification
  5. Phenotypic feature reconstruction
  6. Survival prediction
  7. Multi-task learning for aforementioned tasks

Getting Started

Prerequisites

  • CPU or NVIDIA GPU + CUDA CuDNN
  • Python 3.6+
  • Python Package Manager
  • Python Packages
    • PyTorch 1.2+
    • TensorBoard 1.10+
    • Tables 3.6+
    • scikit-survival 0.6+
    • prefetch-generator 1.0+
  • Git 2.7+

Installation

  • Clone the repo
git clone https://github.com/hashimsayed0/OmiEmbed
cd OmiEmbed
  • Install the dependencies
    • For conda users
    conda env create -f environment.yml
    conda activate omiembed
    • For pip users
    pip install -r requirements.txt

Try it out

  • Train and test using the built-in sample dataset with the default settings
python train_test.py
  • Check the output files
cd checkpoints/test/
  • Visualise the metrics and losses
tensorboard --logdir=tb_log --bind_all

About

Multi-task deep learning framework for multi-omics data analysis

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Jupyter Notebook 57.9%
  • Python 42.1%