Skip to content

andreanovoa/real-time-bias-aware-DA

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Real-time bias-aware data assimilation

Open-source repository for advanced data assimilation techniques, focusing on bias correction in real-time thermoacoustic systems and beyond.


🚀 Getting started

  1. Prerequisites
  1. Clone the Repository
git clone https://github.com/andreanovoa/real-time-bias-aware-DA
cd yourproject
  1. Create and activate the Conda Environment
conda env create -f environment.yml
conda activate real-time-da
  1. Install the package in editable mode
pip install -e . --use-pep517
  1. (Optional) Run the tests and save the output onto a text file
pytest -s --log-cli-level=INFO test_tutorials.py >> test_output.txt 2>&1

Checkout the Tutorials folder, which includes several jupyter notebooks aiming to ease the understanding of the repository.


🌟 What is available?

Data assimilation methods src.data_assimilation

  • EnKF - ensemble Kalman filter
  • EnSRKF - ensemble square-root Kalman filter
  • rBA-EnKF - regularized bias-aware EnKF

Physical models src.models_physical

  • Rijke tube model (dimensional with Galerkin projection)
  • Van der Pols
  • Lorenz63
  • Azimuthal thermoaocustics model

Data-driven models essentials.models_datadriven

  • ESN_model -- Echo state network as a frorecasting tool
  • POD-ESN -- Combines Proper Orthogonal Decomposition (POD) and ESN_model

Bias estimatorssrc.bias

  • Echo State Network
  • NoBias

📂 Structure


.
├── data/              # (Generated) Data files
├── docs/              # Documents and media used in the notebooks
├── results/           # Any results generated will be stored here
├── scripts/           # Includes the files which run by themselves (e.g., main files, tutorials)
│   ├── mains/
│   ├── post_process/ 
│   └── tutorials/ 
├── src/               # Source code including all the objects, classes and functions required in scripts
│   ├── ML_models/
│   │   │── EchoStateNetwork.py
│   │   └── POD.py
│   ├── bias.py
│   ├── create.py   
│   ├── DA.py
│   ├── model.py
│   ├── models_datadriven.py
│   ├── models_physics.py
│   ├── plot_fns.py
│   ├── run.py
│   └── util.py
├─ tests_tutorials.py    # Unit tests
├─ environment.yml       # Conda environment definition
├─ setup.py              # Python package setup
└─ README.md             # This file


📚 Main publications and presentations

Journal papers
  • Nóvoa, Noiray, Dawson & Magri (2024). A real-time digital twin of azimuthal thermoacoustic instabilities. Journal of Fluid Mechanics. Published paper | 🏷️ v1.0.
  • Nóvoa, Racca & Magri (2023). Inferring unknown unknowns. Computer Methods in Applied Mechanics and Engineering. Published paper | Legacy repository.
  • Nóvoa & Magri (2022). Real-time thermoacoustic data assimilation. Journal of Fluid Mechanics. Published paper | Legacy repository.
Conference papers and proceedings
  • Nóvoa & Magri (2025). Online model learning with data-assimilated reservoir computers. Preprint | 🏷️ v1.1.
  • Nóvoa & Magri (2024). Real-time digital twins of multiphysics and turbulent flows. Paper.
  • Nóvoa & Magri (2022). Bias-aware thermoacoustic data assimilation. In_ 51st International Congress and Exposition on Noise Control Engineering. Paper. | Legacy repository.
PhD theses
  • Nóvoa (2024). Real-time data assimilation in nonlinear dynamcal systems. University of Cambridge. Thesis.
Conference presentations (incomplete list)

🤝 Contributing

Contributions, bug reports, and feature requests are welcome! Please open an issue or submit a pull request. For questions or collaborations, please reach out to A. Nóvoa.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published