Skip to content

aGeNtIc ๐Ÿš€ time series anomaly detection on your df with AnomalyAgent().detect_anomalies(df)

License

Notifications You must be signed in to change notification settings

andrewm4894/anomaly-agent

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

11 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

Anomaly Agent

Open in GitHub Codespaces

PyPI - Version Open In Colab

A Python package for detecting anomalies in time series data using Large Language Models.

Installation

pip install anomaly-agent

Usage

See the examples.ipynb notebook for some usage examples.

import os
from anomaly_agent.utils import make_df, make_anomaly_config
from anomaly_agent.plot import plot_df
from anomaly_agent.agent import AnomalyAgent

# set openai api key if not in environment
# os.environ['OPENAI_API_KEY'] = "<your-openai-api-key>"

# get and anomaly config to generate some dummy data
anomaly_cfg = make_anomaly_config()
print(anomaly_cfg)

# generate some dummy data
df = make_df(100, 3, anomaly_config=anomaly_cfg)
df.head()

# create anomaly agent
anomaly_agent = AnomalyAgent()

# detect anomalies
anomalies = anomaly_agent.detect_anomalies(df)

# print anomalies
print(anomalies)
{
  "var1":"AnomalyList(anomalies="[
    "Anomaly(timestamp=""2020-02-05",
    variable_value=3.279153,
    "anomaly_description=""Abrupt spike in value, significantly higher than previous observations."")",
    "Anomaly(timestamp=""2020-02-15",
    variable_value=5.001551,
    "anomaly_description=""Abrupt spike in value, significantly higher than previous observations."")",
    "Anomaly(timestamp=""2020-02-20",
    variable_value=3.526827,
    "anomaly_description=""Abrupt spike in value, significantly higher than previous observations."")",
    "Anomaly(timestamp=""2020-03-23",
    variable_value=3.735584,
    "anomaly_description=""Abrupt spike in value, significantly higher than previous observations."")",
    "Anomaly(timestamp=""2020-04-05",
    variable_value=8.207361,
    "anomaly_description=""Abrupt spike in value, significantly higher than previous observations."")",
    "Anomaly(timestamp=""2020-02-06",
    variable_value=0.0,
    "anomaly_description=""Missing value (NaN) detected."")",
    "Anomaly(timestamp=""2020-02-24",
    variable_value=0.0,
    "anomaly_description=""Missing value (NaN) detected."")",
    "Anomaly(timestamp=""2020-04-09",
    variable_value=0.0,
    "anomaly_description=""Missing value (NaN) detected."")"
  ]")",
  "var2":"AnomalyList(anomalies="[
    "Anomaly(timestamp=""2020-01-27",
    variable_value=3.438903,
    "anomaly_description=""Significantly high spike compared to previous values."")",
    "Anomaly(timestamp=""2020-02-15",
    variable_value=3.374155,
    "anomaly_description=""Significantly high spike compared to previous values."")",
    "Anomaly(timestamp=""2020-02-29",
    variable_value=3.194132,
    "anomaly_description=""Significantly high spike compared to previous values."")",
    "Anomaly(timestamp=""2020-03-03",
    variable_value=3.401919,
    "anomaly_description=""Significantly high spike compared to previous values."")"
  ]")",
  "var3":"AnomalyList(anomalies="[
    "Anomaly(timestamp=""2020-01-15",
    variable_value=4.116716,
    "anomaly_description=""Significantly higher value compared to previous days."")",
    "Anomaly(timestamp=""2020-02-15",
    variable_value=2.418594,
    "anomaly_description=""Unusually high value than expected."")",
    "Anomaly(timestamp=""2020-02-29",
    variable_value=0.279798,
    "anomaly_description=""Lower than expected value in the series."")",
    "Anomaly(timestamp=""2020-03-29",
    variable_value=8.016581,
    "anomaly_description=""Extremely high value deviating from the norm."")",
    "Anomaly(timestamp=""2020-04-07",
    variable_value=7.609766,
    "anomaly_description=""Another extreme spike in value."")"
  ]")"
}
# get anomalies in long format
df_anomalies_long = anomaly_agent.get_anomalies_df(anomalies)
df_anomalies_long.head()
	timestamp	variable_name	value	description
0	2020-02-05	var1	3.279153	Abrupt spike in value, significantly higher th...
1	2020-02-15	var1	5.001551	Abrupt spike in value, significantly higher th...
2	2020-02-20	var1	3.526827	Abrupt spike in value, significantly higher th...
3	2020-03-23	var1	3.735584	Abrupt spike in value, significantly higher th...
4	2020-04-05	var1	8.207361	Abrupt spike in value, significantly higher th...

About

aGeNtIc ๐Ÿš€ time series anomaly detection on your df with AnomalyAgent().detect_anomalies(df)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published