xtreme_s_xlsr_300m_minds14
This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the GOOGLE/XTREME_S - MINDS14.ALL dataset. It achieves the following results on the evaluation set:
- Accuracy: 0.9033
- Accuracy Cs-cz: 0.9164
- Accuracy De-de: 0.9477
- Accuracy En-au: 0.9235
- Accuracy En-gb: 0.9324
- Accuracy En-us: 0.9326
- Accuracy Es-es: 0.9177
- Accuracy Fr-fr: 0.9444
- Accuracy It-it: 0.9167
- Accuracy Ko-kr: 0.8649
- Accuracy Nl-nl: 0.9450
- Accuracy Pl-pl: 0.9146
- Accuracy Pt-pt: 0.8940
- Accuracy Ru-ru: 0.8667
- Accuracy Zh-cn: 0.7291
- F1: 0.9015
- F1 Cs-cz: 0.9154
- F1 De-de: 0.9467
- F1 En-au: 0.9199
- F1 En-gb: 0.9334
- F1 En-us: 0.9308
- F1 Es-es: 0.9158
- F1 Fr-fr: 0.9436
- F1 It-it: 0.9135
- F1 Ko-kr: 0.8642
- F1 Nl-nl: 0.9440
- F1 Pl-pl: 0.9159
- F1 Pt-pt: 0.8883
- F1 Ru-ru: 0.8646
- F1 Zh-cn: 0.7249
- Loss: 0.4119
- Loss Cs-cz: 0.3790
- Loss De-de: 0.2649
- Loss En-au: 0.3459
- Loss En-gb: 0.2853
- Loss En-us: 0.2203
- Loss Es-es: 0.2731
- Loss Fr-fr: 0.1909
- Loss It-it: 0.3520
- Loss Ko-kr: 0.5431
- Loss Nl-nl: 0.2515
- Loss Pl-pl: 0.4113
- Loss Pt-pt: 0.4798
- Loss Ru-ru: 0.6470
- Loss Zh-cn: 1.1216
- Predict Samples: 4086
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1500
- num_epochs: 50.0
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy |
---|---|---|---|---|---|
2.6739 | 5.41 | 200 | 2.5687 | 0.0430 | 0.1190 |
1.4953 | 10.81 | 400 | 1.6052 | 0.5550 | 0.5692 |
0.6177 | 16.22 | 600 | 0.7927 | 0.8052 | 0.8011 |
0.3609 | 21.62 | 800 | 0.5679 | 0.8609 | 0.8609 |
0.4972 | 27.03 | 1000 | 0.5944 | 0.8509 | 0.8523 |
0.1799 | 32.43 | 1200 | 0.6194 | 0.8623 | 0.8621 |
0.1308 | 37.84 | 1400 | 0.5956 | 0.8569 | 0.8548 |
0.2298 | 43.24 | 1600 | 0.5201 | 0.8732 | 0.8743 |
0.0052 | 48.65 | 1800 | 0.3826 | 0.9106 | 0.9103 |
Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.2+cu113
- Datasets 2.0.1.dev0
- Tokenizers 0.11.6
- Downloads last month
- 433
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.