-
Notifications
You must be signed in to change notification settings - Fork 28.5k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SPARK-51259][SQL] Refactor natural and using join keys computation
### What changes were proposed in this pull request? Refactor natural and using join key computation to a separate component so that it can be reused in single-pass resolver. ### Why are the changes needed? To reuse code in single-pass resolver. ### Does this PR introduce _any_ user-facing change? No. ### How was this patch tested? Existing tests. ### Was this patch authored or co-authored using generative AI tooling? No Closes #50009 from mihailotim-db/mihailotim-db/join_refactor. Authored-by: Mihailo Timotic <[email protected]> Signed-off-by: Wenchen Fan <[email protected]>
- Loading branch information
1 parent
f447c43
commit a661f9f
Showing
2 changed files
with
178 additions
and
50 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
166 changes: 166 additions & 0 deletions
166
...src/main/scala/org/apache/spark/sql/catalyst/analysis/NaturalAndUsingJoinResolution.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
/* | ||
* Licensed to the Apache Software Foundation (ASF) under one or more | ||
* contributor license agreements. See the NOTICE file distributed with | ||
* this work for additional information regarding copyright ownership. | ||
* The ASF licenses this file to You under the Apache License, Version 2.0 | ||
* (the "License"); you may not use this file except in compliance with | ||
* the License. You may obtain a copy of the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, | ||
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
* See the License for the specific language governing permissions and | ||
* limitations under the License. | ||
*/ | ||
|
||
package org.apache.spark.sql.catalyst.analysis | ||
|
||
import org.apache.spark.sql.catalyst.SQLConfHelper | ||
import org.apache.spark.sql.catalyst.expressions.{ | ||
Alias, | ||
And, | ||
Attribute, | ||
Coalesce, | ||
EqualTo, | ||
Expression, | ||
NamedExpression | ||
} | ||
import org.apache.spark.sql.catalyst.plans.{ | ||
FullOuter, | ||
InnerLike, | ||
JoinType, | ||
LeftExistence, | ||
LeftOuter, | ||
RightOuter | ||
} | ||
import org.apache.spark.sql.catalyst.plans.logical.LogicalPlan | ||
import org.apache.spark.sql.errors.{ | ||
DataTypeErrorsBase, | ||
QueryCompilationErrors, | ||
QueryExecutionErrors | ||
} | ||
|
||
object NaturalAndUsingJoinResolution extends DataTypeErrorsBase with SQLConfHelper { | ||
|
||
/** | ||
* For a given [[Join]], computes output, hidden output and new condition, if such exists. | ||
*/ | ||
def computeJoinOutputsAndNewCondition( | ||
left: LogicalPlan, | ||
leftOutput: Seq[Attribute], | ||
right: LogicalPlan, | ||
rightOutput: Seq[Attribute], | ||
joinType: JoinType, | ||
joinNames: Seq[String], | ||
condition: Option[Expression], | ||
resolveName: (String, String) => Boolean) | ||
: (Seq[NamedExpression], Seq[Attribute], Option[Expression]) = { | ||
val (leftKeys, rightKeys) = resolveKeysForNaturalAndUsingJoin( | ||
left, | ||
leftOutput, | ||
right, | ||
rightOutput, | ||
joinNames, | ||
resolveName | ||
) | ||
val joinPairs = leftKeys.zip(rightKeys) | ||
|
||
val newCondition = (condition ++ joinPairs.map(EqualTo.tupled)).reduceOption(And) | ||
|
||
// the output list looks like: join keys, columns from left, columns from right | ||
val (output, hiddenOutput) = computeOutputAndHiddenOutput( | ||
leftOutput, | ||
leftKeys, | ||
rightOutput, | ||
rightKeys, | ||
joinPairs, | ||
joinType | ||
) | ||
(output, hiddenOutput, newCondition) | ||
} | ||
|
||
/** | ||
* Returns resolved keys for joining based on the output of [[Join]]'s children or throws and | ||
* error if a key name doesn't exist. | ||
*/ | ||
private def resolveKeysForNaturalAndUsingJoin( | ||
left: LogicalPlan, | ||
leftOutput: Seq[Attribute], | ||
right: LogicalPlan, | ||
rightOutput: Seq[Attribute], | ||
joinNames: Seq[String], | ||
resolveName: (String, String) => Boolean): (Seq[Attribute], Seq[Attribute]) = { | ||
val leftKeys = joinNames.map { keyName => | ||
leftOutput.find(attribute => resolveName(attribute.name, keyName)).getOrElse { | ||
throw QueryCompilationErrors.unresolvedUsingColForJoinError( | ||
keyName, | ||
left.schema.fieldNames.sorted.map(toSQLId).mkString(", "), | ||
"left" | ||
) | ||
} | ||
} | ||
val rightKeys = joinNames.map { keyName => | ||
rightOutput.find(attribute => resolveName(attribute.name, keyName)).getOrElse { | ||
throw QueryCompilationErrors.unresolvedUsingColForJoinError( | ||
keyName, | ||
right.schema.fieldNames.sorted.map(toSQLId).mkString(", "), | ||
"right" | ||
) | ||
} | ||
} | ||
(leftKeys, rightKeys) | ||
} | ||
|
||
/** | ||
* Computes the output and hidden output for a given [[Join]], based on the output of its | ||
* children. | ||
*/ | ||
private def computeOutputAndHiddenOutput( | ||
leftOutput: Seq[Attribute], | ||
leftKeys: Seq[Attribute], | ||
rightOutput: Seq[Attribute], | ||
rightKeys: Seq[Attribute], | ||
joinPairs: Seq[(Attribute, Attribute)], | ||
joinType: JoinType): (Seq[NamedExpression], Seq[Attribute]) = { | ||
// columns not in joinPairs | ||
val lUniqueOutput = leftOutput.filterNot(att => leftKeys.contains(att)) | ||
val rUniqueOutput = rightOutput.filterNot(att => rightKeys.contains(att)) | ||
joinType match { | ||
case LeftOuter => | ||
( | ||
leftKeys ++ lUniqueOutput ++ rUniqueOutput.map(_.withNullability(true)), | ||
rightKeys.map(_.withNullability(true)) | ||
) | ||
case LeftExistence(_) => | ||
(leftKeys ++ lUniqueOutput, Seq.empty) | ||
case RightOuter => | ||
( | ||
rightKeys ++ lUniqueOutput.map(_.withNullability(true)) ++ rUniqueOutput, | ||
leftKeys.map(_.withNullability(true)) | ||
) | ||
case FullOuter => | ||
// In full outer join, we should return non-null values for the join columns | ||
// if either side has non-null values for those columns. Therefore, for each | ||
// join column pair, add a coalesce to return the non-null value, if it exists. | ||
val joinedCols = joinPairs.map { | ||
case (l, r) => | ||
// Since this is a full outer join, either side could be null, so we explicitly | ||
// set the nullability to true for both sides. | ||
Alias(Coalesce(Seq(l.withNullability(true), r.withNullability(true))), l.name)() | ||
} | ||
( | ||
joinedCols ++ | ||
lUniqueOutput.map(_.withNullability(true)) ++ | ||
rUniqueOutput.map(_.withNullability(true)), | ||
leftKeys.map(_.withNullability(true)) ++ | ||
rightKeys.map(_.withNullability(true)) | ||
) | ||
case _: InnerLike => | ||
(leftKeys ++ lUniqueOutput ++ rUniqueOutput, rightKeys) | ||
case _ => | ||
throw QueryExecutionErrors.unsupportedNaturalJoinTypeError(joinType) | ||
} | ||
} | ||
} |