Information theory primitives: entropies and divergences.
Dual-licensed under MIT or Apache-2.0.
use logp::{entropy_nats, kl_divergence, jensen_shannon_divergence};
let p = [0.1, 0.9];
let q = [0.9, 0.1];
// Shannon entropy in nats
let h = entropy_nats(&p, 1e-9).unwrap();
// Relative entropy (KL)
let kl = kl_divergence(&p, &q, 1e-9).unwrap();
// Symmetric, bounded Jensen-Shannon
let js = jensen_shannon_divergence(&p, &q, 1e-9).unwrap();| Family | Generator | Key Property |
|---|---|---|
| f-divergences | Convex |
Monotone under Markov morphisms (coarse-graining) |
| Bregman | Convex |
Dually flat geometry; generalized Pythagorean theorem |
| Jensen-Shannon |
|
Symmetric, bounded |
| Alpha | Encodes Rényi, Tsallis, Bhattacharyya, Hellinger |